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An Optimal Transportation Approach for
Nuclear Structure-Based Pathology

Wei Wang, John A. Ozolek, Dejan Slepčev, Ann B. Lee, Cheng Chen, and Gustavo K. Rohde*

Abstract—Nuclear morphology and structure as visualized from
histopathology microscopy images can yield important diagnostic
clues in some benign and malignant tissue lesions. Precise quanti-
tative information about nuclear structure and morphology, how-
ever, is currently not available for many diagnostic challenges. This
is due, in part, to the lack of methods to quantify these differences
from image data. We describe a method to characterize and con-
trast the distribution of nuclear structure in different tissue classes
(normal, benign, cancer, etc.). The approach is based on quantifying
chromatin morphology in different groups of cells using the optimal
transportation (Kantorovich–Wasserstein) metric in combination
with the Fisher discriminant analysis and multidimensional scaling
techniques. We show that the optimal transportation metric is able
to measure relevant biological information as it enables automatic
determination of the class (e.g., normal versus cancer) of a set of
nuclei. We show that the classification accuracies obtained using
this metric are, on average, as good or better than those obtained
utilizing a set of previously described numerical features. We apply
ourmethodsto twodiagnosticchallenges forsurgicalpathology:one
in the liver and one in the thyroid. Results automatically computed
using this technique show potentially biologically relevant differ-
ences in nuclear structure in liver and thyroid cancers.

Index Terms—Cancer detection, classification, nuclear struc-
ture, optimal transportation, pathology.

I. INTRODUCTION

A. Motivation

C ANCER is the second leading cause of death in the
United States constituting 23% of all deaths [1]. Basic

research has focused on uncovering molecular signatures of

Manuscript received July 26, 2010; revised October 11, 2010; accepted Oc-
tober 12, 2010. Date of publication October 25, 2010; date of current version
March 02, 2011. This work was supported by the National Institutes of Health
under Grant 5R21GM088816-02. Portions of the material in this paper overlap
with portions of materials published by the same authors in the IEEE ISBI 2010
conference and in the 26th Souther Biomedical Engineering Conference (SBEC
2010). Asterisk indicates corresponding author.

W. Wang is with the Center for Bioimage Informatics, Biomedical Engi-
neering Department, Carnegie Mellon University, Pittsburgh, PA 15213 USA
(e-mail: wwang2@andrew.cmu.edu).

J. A. Ozolek is with the Department of Pathology, Children’s Hospital of
Pittsburgh, Pittsburgh, PA 15201 USA (e-mail: ozolja@upmc.edu).
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tumors and designing new therapies that target specific growth
and signaling pathways [2]–[4]. Before therapy, however, an
accurate diagnosis must be made. Despite advances in radi-
ological imaging, a tissue diagnosis must be obtained using
increasingly minimally invasive procedures with the surgical
pathologist playing a critical role in this process. Within small
tissue samples (needle biopsies and fine needle aspirations),
diagnostic information can potentially be lost (microarchitec-
ture, relationships to other structures) and the pathologist then
relies heavily on cellular features (cytoplasmic and nuclear)
and expensive ancillary techniques (special stains, immunohis-
tochemistry, molecular diagnostics) for a correct diagnosis [5],
[6].

Surgical pathologists use visual interpretation of nuclear
structure to distinguish cancer from normal, benign, and pre-
malignant tissue [7]. Many tumors have certain characteristic
nuclear appearances or features that clearly aid in narrowing
the differential diagnoses (e.g., Langerhans cell histiocytosis,
papillary carcinoma of the thyroid). Aberrations in the genetic
code and the transcription of different messenger RNAs lie
at the heart of transformation from normal to premalignant
and malignant lesions. These changes occur in the nucleus
and are accompanied by the unfolding and repackaging of
chromatin that in part or in whole produces changes in nuclear
morphology (size, shape, membrane contours, the emergence
of a nucleolus, chromatin arrangement, etc.). Fig. 1(c) shows
nuclei depicting the complex variation in nuclear structure and
chromatin distribution that can occur. Nuclei can be big, small,
round, elongated, bent, etc. Cells can have their chromatin
distributed uniformly inside the nucleus, along its borders,
concentrated into small regions, anisotropically distributed, and
with any combination of the above. It has long been known that
this information defines phenotypes that are associated with
important biological processes, including cancer [8].

We propose a new approach to describe the distribution of
nuclear structure in different tissue classes. In contrast to most
previous works, in which each nucleus image is reduced to a
set of numerical features [9]–[11], we utilize a geometric ap-
proach, which interprets the data as distribution over carefully
constructed mathematical geometries, to quantify the similarity
of groups of nuclei (see Section III for more detail). Beyond
simple automated classification, our approach seeks to provide
a visual representation of the nuclear morphometry that charac-
terizes and differentiates normal, premalignant, and cancerous
populations of cells. Moreover, instead of seeking to analyze
single nuclei, our goal is to describe a method to characterize a
distribution of cells of a given tissue, since this distribution may
hold important diagnostic clues. In this work we focus on dis-
tinguishing lesions within two tissues: one in the liver and one
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Fig. 1. Feulgen stained image and segmentation results. (A) Raw image. (B)
Segmented image. (C) Individual segmented nuclei after preprocessing. Some
sample nuclei show variations in size, shape, membrane contours, etc. Note that
each of these images has been contrast stretched for best visualization.

in the thyroid. However, we believe our approach could be used
for characterizing nuclear structure of different cancers in dif-
ferent tissues.

B. Previous Work on Automated Digital Pathology

In part due to well documented limitations of the human
brain and visual system [12], [13], computational approaches
have emerged as powerful tools for reproducible and automated
cancer diagnosis based on digital histopathology images. For
decades, numerous papers have been published using com-
putational methods to separate diagnostic entities, and some
commercial software packages have been developed to screen
for cancer cells with varying degrees of success [14]. The
overwhelming majority of computational approaches follow
a standard feature-based procedure where an image can be
represented by a set of numerical features (see [9]–[11] for
reviews). These methods can be described as a processing
“pipeline” consisting of: image preprocessing (normalization,
segmentation), feature extraction, and classification of the state
of the tissue (e.g., normal or diseased) (see [14]–[18] for a few
examples). In addition to these works, and although not directly
related to the problem of pathology, we also mention the works
of Yang et al. [19] and Mangoubi et al. [20] on measuring
and quantifying chromatin and other nuclear components in
time-lapse microscopy images.

These methods have been applied to the diagnosis of several
types of cancers including prostate [21], cervix [14], [22], thy-
roid [23]–[30], liver [31]–[34], breast [35], and several others.
While successful in some cases (see our earlier work [36] where
we have applied such an approach to some of the same data used
in the results shown below), feature-based methods have some
important limitations. First, although classification can be ac-
complished in some cases, it is at times difficult to obtain useful
and relevant biological information from such methods. This is
due to the fact that when classifiers are used in multidimensional
feature spaces, they rely on combinations (linear or nonlinear)

of features each with different units, making physical interpre-
tation notoriously difficult. Secondly, because the operation is
usually not reversible, the reduction of each image to a set of
features results in compression of information. In this context
information from the digital image that may ultimately have di-
agnostic or biological significance is discarded.

In this paper, we describe a geometric approach for classi-
fying and understanding nuclear distributions without first re-
ducing each nucleus to a set of features. Similar techniques have
been applied to medical imaging problems at the macroscopic
scale where the goal is to build statistical models of different
organs (see [37]–[42] for a few examples). The main idea in
these works is to understand the anatomical variation of organs
such as the brain or heart in human populations through anal-
ysis of the deformation fields required to warp one anatomy (as
depicted in a radiology image) onto another, often with the prin-
cipal component analysis technique. We explore a similar idea,
but with focus on describing nuclear distributions of different
tissue classes.

C. Overview of Our Contribution: A Geometric Framework
for Nuclear Morphometry Using Optimal Transportation

We describe a new technique for nuclear chromatin mor-
phometry and pathology that utilizes the optimal transportation
(OT) metric for quantifying the distribution of nuclear mor-
phometry of different tissue classes. Classification of sets
of nuclei is achieved with a kernel support vector machine
approach, utilizing the distances given by the OT metric, in
combination with a majority voting procedure. Distributions
of nuclei are characterized and differentiated utilizing the
Fisher Discriminant Analysis, in conjunction with the Multi-
dimensional Scaling technique applied to distances computed
using OT. Results show that the performance of a classifier
using OT distances alone performs at least as well as the
same classifier utilizing distances derived from numerical
features. In addition, we show that our approach complements
traditional feature-based approaches in that combining both
OT and numerical-feature derived distances can measurably
increase classification accuracy. Finally, we provide results
characterizing differences and similarities between the nuclear
structure of normal cells and different cancer cells in the liver
and thyroid.

II. DATA AND PREPROCESSING

A. Tissue Processing and Imaging

Tissue blocks were obtained from the archives of the Univer-
sity of Pittsburgh Medical Center (Institutional Review Board
approval #PRO09020278). Cases for analysis included five re-
section specimens with the diagnosis of follicular adenoma of
the thyroid (FA) and five cases of follicular carcinoma of the
thyroid (FTC). For the other diagnostic challenge, five cases
of fetal-type hepatoblastoma (FHB), a tumor of the liver in pe-
diatric patients, and five cases of normal liver were compared.
We refer these cases as “diagnostic challenges,” because, within
these categories of lesions, the individual diagnostic entities can
be difficult to sort from one another by visual methods and usu-
ally require additional consultation and testing to determine a
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diagnosis, particularly on needle biopsy or cytology specimens.
The diagnostic challenge of thyroid represents a group of le-
sions that currently does not use the nuclear features to separate
the two entities but rather requires extensive tissue sampling to
look for the presence or absence of certain diagnostic microar-
chitectural features to separate the benign lesion (FA) from the
malignant one (FTC). The diagnostic challenge of liver mani-
fests itself more so when a small biopsy of a liver mass is taken
and the pathologist must distinguish whether or not the lesion
has been sampled (normal liver versus tumor) and then be able to
render a diagnosis of FHB. In this case, the distinction between
normal liver and FHB is the primary challenge. For each case
of the thyroid and liver, nuclei from normal appearing tissues
(denoted NL) were also extracted. Tissues were procured at the
time of a surgical procedure, and then chosen for our analysis
retrospectively over a several year span. All tissues were fixed
in 10% neutral buffered formalin and processed by routinely
used methods on a conventional tissue processor using a se-
ries of graded alcohols and xylenes prior to paraffin-embedding.
Tissue sections were cut at 5 m thickness from the paraffin-em-
bedded block and stained using the Feulgen technique which
stains DNA only. This approach has been used in other morpho-
metric studies to specifically isolate nuclei for computational
analyses [43], [44] and in our experience allows for more accu-
rate segmentation of the nucleus compared to hematoxylin and
eosin, hematoxylin alone, or periodic acid-Schiff stained sec-
tions. Counterstaining was not performed to avoid possible in-
terference from the cytoplasm with accurate isolation and seg-
mentation of nuclear membrane boundaries. Only nuclei were
stained with a deep magenta hue (see Fig. 1(a) for a sample
image).

All images used for analysis in this study were acquired using
an Olympus BX51 microscope equipped with a 100X UIS2 ob-
jective (Olympus America, Inc., Central Valley, PA) and 2 mega
pixel SPOT Insight camera (Diagnostic Instruments Inc., Ster-
ling Heights, MI). Image specifications were 24 bit RGB chan-
nels and 0.074 m/pixel, 118 89 m field of view. Slides were
chosen by the pathologist (J. A. Ozolek) that contained both le-
sion (FHB, FA and FTC) and adjacent normal appearing tissue
(NL). For each case, between 10 and 20 random fields were im-
aged to guarantee that at least 200 nuclei were obtained, for both
lesion and normal tissue. Nuclei were chosen (using a single
mouse click) by the pathologist and engineer (W. Wang) for seg-
mentation and analysis that demonstrated a complete and intact
nuclear membrane within the focal plane.

B. Segmentation and Intensity Normalization

Nuclear segmentation consisted of the following three-step
procedure. First, a random field graph cut method [45] was
utilized to find a near global optimal segmentation, in a com-
putationally efficient manner, which incorporates both region
and boundary information. Briefly, the image segmentation
problem was formulated as a pixel labeling problem, while the
image data was modeled as a Markov Random Field. An energy
function can be found to judge the quality of segmentation.
This function can be expressed using a graph structure, and the
min-cut of the graph corresponds to an optimal segmentation.
Secondly, an efficient level set active contour algorithm [46]

is used to refine the initial segmentation (obtained via graph
cut) towards the boundary (estimated with the finite difference
first derivative) of the nuclei, while constraining a certain
smoothness of the final result. The corresponding parameters
used were set as , , , and . In the end,
the pathologist (J. A. Ozolek) visually inspected all segmented
nuclei for quality of segmentation to ensure a circumferential
and sharply delineated nuclear membrane. In addition, nuclei
were chosen from cells that represented the tissue of interest
(tumor or normal) excluding other cells (inflammatory cells,
cells containing hemosiderin pigment that obscured the nu-
cleus, biliary epithelial cells (for liver cases), perifollicular
cells (for thyroid cases), etc.). In total, using the above criteria,
approximately 40% of segmented nuclei were included for
analysis. A typical segmentation result is shown in Fig. 1(b).
As our focus is on the analysis of nuclear morphometry, we did
not investigate the nuclear segmentation problem extensively
and point out that several other approaches already described
in the literature could be used [47].

Images containing individual nuclei were converted to
grayscale by selecting the green channel from the RGB im-
ages, and inverting the intensity values such that a zero (color
coded in black) corresponds to the relative minimum amount
of chromatin in the nucleus. We note that selecting magenta
channel in the CMYK color space yielded very similar results.
All nuclei were normalized so that the sum of their intensity
values is 1. This was done to guarantee that nonuniformities
related to staining and image acquisition, from case to case,
were not able to interfere with our method. In total, we ex-
tracted 871 normal thyroid nuclei, 489 follicular adenoma and
703 follicular carcinoma nuclei from the thyroid data set. In
addition, 461 fetal-type hepatoblastoma and 396 normal liver
nuclei were extracted from the liver data set. A few sample
nuclei chosen for the entire data are displayed in Fig. 1(c).

C. Preprocessing

Nuclei images were preprocessed as in our previous works
[48], [49] to eliminate, approximately, variations due to arbi-
trary rotation, translation, and coordinate inversions of each
nucleus. The procedure includes normalization by the center
of mass, rotation by major axis reorientation, and coordinate
“flips” set up within a least squares minimization problem (see
[48], [49] for more details). It is important to note that the ob-
jective is to make the distance measurements described below
invariant with respect to the uninteresting variations mentioned
above. To the best of our knowledge, there is currently no
efficient algorithm that can make our metrics invariant under
Euclidean transformations.

III. METHODS

A. Optimal Transportation for Comparing Nuclear Chromatin

We believe the OT metric can capture some of the important
information that characterizes the differences in nuclear struc-
ture in different cells (see Fig. 1(c) for a few examples, and Sec-
tion I-A for their description). More precisely, we utilize the OT
metric to quantify how much chromatin, in relative terms, is dis-
tributed in which region of the nucleus. There are two benefits of
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Fig. 2. Schematic illustration of geometric approach for decoding discriminant
information between normal and cancerous nuclei. Each black dot denotes a
nucleus from a cancerous tissue, while the green (gray) dots denote the nuclei
from a normal tissue. Geodesic paths between any two nuclei can be computed
using the approaches described in the text. Projections over these can also be
computed utilizing the same geometric metric being utilized. Discriminating
paths (see Fig. 3 for an actual example) are those over which the projection
of the two (or more) populations differ most. In this case geodesic 1 is not as
informative as geodesic 2.

using the OT framework: 1) it provides a distance for comparing
two nuclei and 2) provides a shortest (in the OT sense) connec-
tion path (geodesic) between them. The distances are used to
quantitatively compare two nuclei (and subsequently to classify
sets of nuclei). The geodesics (interpolation between nuclei) are
used to visualize the data (exemplified in Fig. 2 conceptually
and in Fig. 3 with an actual example). We believe being able
to visualize the data in such way (that is, counting, in relative
terms, how many nuclei appear similar to each interpolated nu-
cleus displayed on the bottom of Fig. 3) is an important addition
to the field of pathology that is currently not available through
other methods.

Here, we describe the optimal transportation metric used for
quantifying and classifying nuclear structure. We first do it in a
general setting, and then apply it to discrete representations of
the images considered. We note that the optimal transportation
distance metric has been used in the past for different image
analysis problems [50], [51].

Let represent the domain (the unit square , for ex-
ample) over which images are defined. Let us consider proba-
bility measures and on . Recall that probability measures
are nonnegative and that the measure of the whole set is 1:

. In application to images, the measure of a set is
the sum of intensities over all pixels in the set. On the other hand,
as customary when discussing optimal transport, we will often
refer to the measure of a set as its mass. Let
be the cost function. That is is the “cost” of transporting
unit mass located at to the location . The optimal trans-
portation distance measures the least possible total cost of trans-
porting all of the mass from to . To make this precise, con-
sider , the set of all couplings between and . That
is consider the set of all probability measures on with the
first marginal and the second marginal . More precisely,
if then for any measurable set we have

and . Each coupling de-
scribes a transportation plan, that is is telling one
how much “mass” originally in the set is being transported
into the set .

We consider optimal transportation with quadratic cost

The optimal transportation distance, also known as the Kan-
torovich–Wasserstein distance, is then defined by

(1)

It is well known that the above infimum is attained and that the
distance defined is indeed a metric (satisfying the positivity, the
symmetry, and the triangle inequality requirements), see [52].
For the quadratic cost the space of probability measures is en-
dowed with a structure of a Riemannian manifold [52]. This
Riemannian manifold structure is needed to be able to consider
paths and in particular the shortest path (i.e., geodesics) con-
necting any two probability measures, which, in our case, two
images of nuclei in the space of images (e.g., in Figs. 3–7).
Moreover, one can use the geodesic path to interpolate between
images and in a way consistent with the metric. Namely let

be the minimizer of (1). For consider the function
. Then the images on the geodesic are

given by , that is
, with the convenient property that the OT distance

between and is given by .
In our application, each nuclear structure is represented in a

gray level digital image (of size 192 192 pixels). Each image
containing one single nucleus can be represented as

(2)

where is a Dirac delta function at pixel location , is the
number of pixels in image , and are the pixel intensity values.
To accelerate the computation, we use a point mass approxi-
mation to model the chromatin distribution of each nucleus. In
specific, we use Lloyd’s weighted -means algorithm [53] to
adjust the position and weights of a set of particle
masses to approximate the total intensity distribution of each
nuclei. In all of the computations in this paper, . The
number of particles was chosen so that there is a good bal-
ance between accuracy and speed. Ideally we would like to set
these to be the number of pixels in each nuclear image. How-
ever, a linear programming based implementation of the dis-
tance on a 192 192-size image would be impractical for this
application. Therefore, the number of particles we chose was so
that the average computational time between pairs of nuclei was
roughly one minute. When more computational power is avail-
able, one could use more particles. The weighted -means al-
gorithm merges points if two clusters fall within the same pixel
coordinate, and this is the reason that is not fixed to one single
number for all images. The problem has now been reduced to
finding the OT distance between and

with and the number of delta-masses chosen
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Fig. 3. A geodesic generated by � , and � . The larger images on top are the real nuclei images. All the other images are interpolated based on � , and � . The
red dots in � and � are locations of particle masses used to approximate each image (see text for a complete description).

Fig. 4. Geodesic identified automatically by our method. In the histogram, the
height of the bar directly above each nucleus indicates the proportion of nuclei
in each data class was most similar (in the OT sense) to the nucleus directly
below it. In this plot normal liver and FHB nuclei are compared, with FHB
nuclei having their chromatin more evenly spread over the entire nucleus (see
text for more details).

Fig. 5. Geodesic identified automatically by our method. In the histogram, the
height of the bar directly above each nucleus indicates the proportion of nuclei
in each data class was most similar (in the OT sense) to the nucleus directly
below it. In this plot, normal thyroid, FA and FTC nuclei are compared. We
can observe that normal thyroid nuclei are relatively smaller than nuclei in the
thyroid neoplasms (FA and FTC); the size of FA nuclei are accumulated to a
specific size region, while the FTC nuclei are more evenly distributed in terms
of size(see text for more details).

for representing images and . The minimization problem in
(1) then reduces to finding an matrix with

which minimizes

subject to the constraints for all ,
and for all , . We utilize Matlab’s

Fig. 6. Geodesic selected manually to investigate an interesting projection. In
the histogram, the height of the bar directly above each nucleus indicates the
proportion of nuclei in each data class (normal versus FA versus FTC) was most
similar (in the OT sense) to the nucleus directly below it. This geodesic in the
bottom mainly shows variation in nuclei texture from chromatin smoothly dis-
tributed to chromatin accumulated exclusively along peripheral. We can observe
that normal thyroid nuclei, in relative terms, are mostly smooth, while the chro-
matin distributions of neoplastic nuclei (FA and FTC) tend to distribute more
evenly in these two patterns.

Fig. 7. Geodesic selected manually to investigate an interesting projection. In
the histogram, the height of the bar directly above each nucleus indicates the
proportion of nuclei in each data class (normal versus FA versus FTC) was most
similar (in the OT sense) to the nucleus directly below it. This geodesic in the
bottom mainly shows variation in nuclei texture from smooth texture to chro-
matin highly accumulated in some locations. We can observe that the chromatin
distributions of neoplastic nuclei (FA and FTC) tend to be more centrally lo-
cated.

implementation of a variation of Mehrotra’s dual interior
point method [51] to solve the linear program. The geodesic
interpolation between , and can be approximated by

which we denote by for
.
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B. Supervised Classification

1) Kernel Based Support Vector Machines: From our pre-
vious experience with thyroid histopathology data [36], we have
found that the support vector machine (SVM) method, when
combined with a simple voting strategy, performed best when
compared with other classification methods for determining the
class of a given set of nuclei [36], [54]. We describe the SVM
that utilizes numerical features first, and then show how it can
be adapted to utilize only pairwise (OT) distances only.

Given a training data set of images , we can compute a set
of features (stored in vector format ) describing the
morphological properties of the nucleus depicted in image .
See [36] for a complete description of the numerical features
used in this work. In a two class problem, given the feature-label
pairs , where , the support
vector machine seeks to find linear hyperplanes (determined by
parameters and ) that best separate the data set in an “en-
larged” space. It can be formalized as the solution of the fol-
lowing optimization problem [55]:

(3)

Because the data set is not always linearly separable, the
represents the distance of each error point to its cor-

rect plane, and is a penalty constant for the error term.
is a fixed nonlinear mapping function (known as basis

function) that extends training vectors into a higher di-
mensional space . This problem is
usually solved in its dual representation [55], where the
data always occur in pairs, with the aid of the so-called
kernel function [56] . In
our work we utilize the radial basis function (RBF) kernel

when-
ever numerical features are used. In order to utilize the
OT distances described above, the kernel is modified as

. We note that
such a technique (replacing a kernel based on Euclidean dis-
tances for other distances) has been used previously [57], [58].
While we are unable to show mathematically that this replace-
ment satisfies Mercer’s condition (positive semi-definite ),
we have studied the issue empirically and in all tests the matrix

was a positive definite
matrix, thus allowing for the replacement in the kernel-SVM
procedure. It is worth noting that even if the new kernel as
modified above does not satisfy the positive semi-definite
criterion, it can still be used in the SVM framework. In such
case, however, the hyperplane found by the SVM procedure
may not be optimal [58]. Finally, for multiple classes problems,
we use “one-versus-all” strategy [59] to reduce the single
multiclass problem into multiple binary problems. We then use
a max-wins voting strategy to combine these binary results for
classifying the test instance.

2) Cross Validation: Cross validation is performed to select
the optimal parameters, as well as to test the average

classification accuracy of the system. We use a “leave-one-out”
strategy to separate the data into training and testing sets, where
data from one case is used for testing and the remaining cases
are used for training the classifier.

In order to train a classifier, we used -fold cross validation
to further separate the training set into two parts and searched
for optimal parameters that had the best accuracy in this

-fold cross validation. We set , and performed an ex-
haustive search for the two parameters. After the optimal pa-
rameters are selected, we use them to build the classifiers and
evaluate their performance on the testing data.

C. Characterizing Distributions of Nuclei

The geodesics that connect the nuclear structures in the en-
tire data set can be used to characterize and contrast the differ-
ences between different tissue classes. The idea is to interpret
each nuclear structure as a point in the OT manifold and seek
geodesics onto which the projections of nuclear exemplars from
different tissue classes most differ according to some quantita-
tive criterion (see Fig. 2). The criterion we use is the one de-
scribed by Fisher [60] and used in the Fisher linear discrimi-
nant analysis (LDA) method. However, because explicit “coor-
dinates” for each nuclear structure are not available (only pair-
wise distances) an Euclidean embedding for the data must be
computed before Fisher LDA can be performed. Exemplar nu-
clei are chosen based on the output of this procedure and used
to compute the geodesic over which the nuclear structure of dif-
ferent tissue classes can be approximated.

1) MDS for Obtaining Euclidean Embedding: Given a set of
such multidimensional points (morphological exemplars), and
their pairwise distances computed using the OT framework dis-
cussed above, multidimensional scaling (MDS) can be used to
find a low dimensional “Euclidean” embedding of the data. Let

, with given by (1). The goal in
MDS is to find a set of coordinates , in an
Euclidean space that preserves the OT distances computed [61]
(more precisely their inner product). This task can be achieved
by choosing positive eigenvalues and corresponding eigen-
vectors of the matrix , with

, and representing the identity ma-
trix. Let represent the eigenvalues of , arranged in
decreasing order of magnitude, and with corresponding eigen-
vectors . The component of vector is given
by . For a given , the pairwise distance can be recon-
structed by its Euclidean embedding . As in
[62] is selected such that the residual variance

, where the correlation coefficient between these
matrices.

2) Fisher LDA for Discrimination: Once each nucleus in a
given data set has been connected to an Euclidean coordinate
through the MDS technique, we utilize Fisher’s linear discrim-
inant analysis (LDA) technique [60] to compute the direction
in this multidimensional Euclidean space (here denoted ) onto
which the data from two classes, if projected, would differ most
according to the metric where
represents the “between classes scatter matrix,” represents
the “within classes scatter matrix.”
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3) Computing Projections in OT Space: After finding the
discriminating direction by Fisher LDA, we can compute the
projections of all the data on this most discriminant direction,
and select the points with smallest and largest projections. The
geodesic path linking these two extreme points (denoted here
as ) can be computed as described in Section III-A. The pro-
jection of the nucleus over geodesic, interpolated by , can
be formalized as . This is computed by

sampling the path at 11 points ( ), computing the dis-
tance of each nucleus to be projected to all points in the path,
and choosing the smallest distance.

IV. RESULTS

Here we describe results obtained in analyzing nuclear struc-
ture in two different diagnostic challenges, one in the liver and
the other of thyroid cancers. The data set is described in Sec-
tion II. We begin by demonstrating a sample computation of
geodesic path between two sample nuclei. We then show that
the distances computed using the OT framework can be used
to achieve similar accuracy to the traditional feature approach
to this problem described in detail in [36]. Finally, we demon-
strate how the OT framework described above can be useful to
extract meaningful quantitative information depicting the differ-
ences (in a distribution sense) that allow the data to be automat-
ically classified.

A. Computation of OT Distances and Geodesics

An example geodesic is shown in Fig. 3. The larger images ,
on top of are the real images chosen for this computation. The

red dots placed on them are the final locations for the point mass
approximation . The bottom strip shows the actual geodesic. The
end images in this strip are the approximated versions of the
images shown on top.

B. Classification Accuracy Comparisons

As a first step, it is beneficial to understand whether the OT
metric can capture the morphological information necessary for
distinguishing different classes. In a previous work [36] we have
described a system that utilizes a combination of 125 numer-
ical features (including shape parameters, Haralick features, and
multi-resolution-type features) and an SVM classifier together
with a simple majority voting strategy to classify sets of nuclei.
For each diagnosis challenge, a classifier is trained (based on
labeled data) to determine whether a single nucleus pertains to
a normal or a lesion-type class. The class of a group of nuclei
of unknown origin can be determined by classifying each indi-
vidual nucleus from that group and selecting the class to which
the majority of nuclei were assigned. Our previous work [36]
shows that this system is capable of classifying some of the same
data (the thyroid data) used in this paper with 100% accuracy.

Critical to this performance is the average classification accu-
racy for individual nuclei. When using a majority voting proce-
dure the overall accuracy for classifying a group of nuclei will
follow, approximately, a binomial/hypergeometric distribution.
In a two class problem, for example, if the average classification
accuracy for each class is greater than 50%, then perfect classifi-
cation accuracy on a per human case basis can be achieved by se-
lecting sufficiently many nuclei from that patient. Our previous

TABLE I
AVERAGE CLASSIFICATION ACCURACY IN LIVER DATA

work [36] contains a few Monte-Carlo computations describing
the approximate number of nuclei necessary for perfect clas-
sification of each case. After extensive testing and fine tuning,
our feature-based classification system consisted of training an
SVM classifier with all 125 features individually normalized by
their standard deviation. We tested whether feature selection ap-
proaches could be used to improve on these classification accu-
racies, but the improvement was negligible.

The results of classifying individual liver and thyroid nuclei
using RBF kernel based SVM methods for both features and
OT metric are contained in Table I (liver) and Table II (thyroid),
respectively. We note that all classification accuracies reported
are averaged for all nuclei belonging to a human patient. We
also note that both feature-based and OT-based classifiers are
identical in their implementation. Since we are using the kernel
SVM method described earlier, the only difference is in the ac-
tual distance (OT versus feature-based normalized Euclidean
distances). For liver cases, we randomly selected 500 nuclei
from the entire five cases (evenly distributed between human
cases and classes, 100 nuclei per case), and for thyroid, we ran-
domly selected 1050 nuclei from 10 cases (105 per case). All re-
sults were computed using the leave one out validation strategy
described early. We emphasize again that training and testing
data never overlapped, and that nuclei pertaining to each human
case were classified without using data from the same case for
training.

In Table I, each row corresponds to a testing case, and the
numbers correspond to the average classification accuracy
(over all nuclei for each case) for normal liver and hepatoplas-
toma. The first column indicates the classification accuracy
for feature-based approach; the second column indicates the
OT metric; and the third column indicates the classification
accuracy for combined metrics (see below). Similarly, Table II
shows classification accuracies for the 10 thyroid cases, where
case 1 to case 5 consist of FA and NL, and case 6–10 consist
of FTC and NL. In Table II each row indicates a lesion from
one testing case, and for each lesion, we separately report the
percentage of nuclei classified as NL, FA and FTC either based
on feature-based approach (shown in the first, second and
third columns) or based on OT metric approach (shown in the
forth, fifth and sixth columns). The seventh column indicates
the combined accuracy (see below). The average accuracy for
feature-based approach is NL 0.8057, FA 0.6172, FTC 0.5461,
and the average accuracy for OT metric is NL 0.8057; FA
0.5935; FTC 0.64. These results show that OT-metric based
classification performs as well as feature-based classification
(slightly better on average), and it is more robust in the sense
that it has more discriminantion power in the most difficult
cases to classify (e.g., thyroid cases 9 and 10).
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TABLE II
AVERAGE CLASSIFICATION ACCURACY OF THYROID DATA. NL: NORMAL THYROID; FA: FOLLICULAR ADENOMA; FTC: FOLLICULAR CARCINOMA. EACH

ROW INDICATES A LESION FROM ONE TESTING CASE, AND FOR EACH LESION, WE SEPARATELY REPORT THE PERCENTAGE OF NUCLEI CLASSIFIED AS NL,
FA AND FTC EITHER BASED ON FEATURE-BASED APPROACH (SHOWN IN THE FIRST, SECOND AND THIRD COLUMNS) OR BASED ON OT METRIC APPROACH

(SHOWN IN THE FORTH, FIFTH, AND SIXTH COLUMNS). SEVENTH COLUMN INDICATES THE COMBINED ACCURACY

In addition to individual classification accuracies with fea-
tures and OT, we have also tested whether a linear combina-
tion of these two distances could improve upon the results of
each individual metric. The combined kernel was chosen to be

,
. Using the same cross validation strategy introduced in

Section III-B2, we performed a two-level cross validation to se-
lect the parameters described earlier. The classifica-
tion accuracies for this combined kernel are reported in the last
columns of Tables I and II. We can see that the accuracies always
increase in all the thyroid cases, as well as for most of the liver
cases. Although 15 human cases is not an extensive data set,
we can conclude that the OT and feature-based metrics contain
complimentary information as far as this data set is concerned.
The complimentary information could be used in conjunction
to produce a classification method that, on average, performs
better than either metric alone.

C. Characterizing Distributions of Nuclei

We use the automatic method described in Section III-C to
identify discriminant geodesic projections for liver and thyroid
cases, shown in the bottom of Figs. 4 and 5, respectively. Re-
sults suggest that, according to the available data, the most im-
portant information for discriminating between NL and FHB is
the amount, in relative terms, of chromatin concentrated towards
the border of the nucleus. The histogram shown in Fig. 4 sug-
gests that it is uncommon for FHB nuclei to have a chromatin
distribution concentrated exclusively at the nuclear periphery.
In thyroid cases, since it is a three-class classification problem,
we use Fisher LDA to find direction that best separates normal
vs neoplastic (combining FA and FTC). We find, as shown in
Fig. 5, that the most discriminant information for differentiating
populations of normal and neoplastic thyroid nuclei is size. For
example, normal thyroid nuclei are relatively smaller than nuclei
in the thyroid neoplasms (FA and FTC); the size of FA nuclei are

accumulated to a specific size region, while the FTC nuclei are
more evenly distributed in terms of size. We also used Fisher
LDA to find the most discriminant direction only for FA and
FTC, and we find that the most discriminant information is also
size (results not shown).

Finally, the OT framework allows a user to interact manually
with the data, and explore a priori hypotheses relating to
nuclear structure in different tissue classes. For example, the
geodesic shown in Fig. 6 represents the difference in nuclear
chromatin distribution from nearly uniform concentration to
chromatin accumulated exclusively along peripheral region of
the nucleus. From the histogram of the thyroid cases, we can
observe that normal thyroid nuclei, in relative terms, are mostly
smooth, while the chromatin distributions of neoplastic nuclei
(FA and FTC) tend to distribute more evenly in these two pat-
terns. The geodesic shown in Fig. 7 shows another chromatin
distribution pattern: from smooth texture to chromatin highly
accumulated in the center of the nucleus. Its histogram suggests
that the chromatin distributions of neoplastic nuclei (FA and
FTC) tend to be more centrally located.

A natural question to ask, in particular for the projections
computed by selecting interesting nuclei manually, is whether
the projections contain statistically meaningful information.
This question can be answered by testing whether or not the
projections themselves can be used to classify the data. We
have also tested this idea by performing a similar leave one out
cross validation strategy, where training consists of computing
the histogram projection distribution. An unlabeled case is then
classified by first projecting the available data along the same
geodesic, and then finding the closest match for histograms
(in the sense) obtained from the training step. For liver
cases, the geodesic shown in Fig. 4 can correctly classify all the
NL and FHB cases. Compared with liver cases, thyroid cases
are harder to classify just based on individual geodesics. The
geodesic shown in Fig. 5 can classify all the NL cases correctly,



WANG et al.: AN OPTIMAL TRANSPORTATION APPROACH FOR NUCLEAR STRUCTURE-BASED PATHOLOGY 629

but misclassifies three cancer cases, for a total classification
accuracy of 17/20 groups (including also the normal samples).
The geodesic shown in Fig. 6 can classify all the NL cases
correctly, but misclassifies five cancer cases (total accuracy of
15/20, including normal samples). The geodesic shown in Fig. 7
can classify all the NL cases correctly, but misclassifies four
cancer cases (total classification accuracy of 16/20 groups).

V. DISCUSSION AND CONCLUSION

We described an approach for automated digital pathology
based on nuclear structure that is complementary to existing
feature-based strategies, in particular when it comes to visual-
izing data distributions. The approach is based on quantifying
chromatin morphology in different tissues classes (normal,
cancer A, cancer B, etc.) using the optimal transportation (Kan-
torovich–Wasserstein) metric between pairs of nuclei. These
distances are utilized within a supervised learning framework
to build a classifier capable of determining the tissue class
to which a particular set of nuclei belongs. We compare our
approach to the standard feature-based classification approach
using image data from a total of 15 human cases. Results show
that on average, the optimal transportation metric performs as
well or better than a popular feature-based implementation. In
all 15 human cases the individual nuclei classification accura-
cies allow 100% classification accuracy of the data, as long as
multiple nuclei are used in a voting procedure [36].

In addition to automated classification we also describe how
optimal transportation-based geodesic paths can be used to
summarize differences between the nuclear structure (chro-
matin distribution) of different tissue classes. The approach
involves computing the pairwise distances between all nuclei
in the data set and using the MDS technique to find an inner
product preserving Euclidean embedding for the data. Fisher
LDA is then applied to discover the modes of variation that are
most responsible for distinguishing two classes of nuclei. Once
the variation, in the form of a optimal transportation geodesic,
is computed, a projection of the data can be used to visualize
the main differences in chromatin configuration in two or more
tissue classes.

We demonstrated that the geometric framework proposed can
be used to discover potentially meaningful biological or diag-
nostic information in liver and thyroid cancers. In many dif-
ferentiated cells, heterochromatin is associated with the nuclear
lamina at the nuclear periphery [63]. However, in cancer cells,
this compact peripheral staining is lost in lieu of a more uni-
form or open chromatin pattern (euchromatin) indicating areas
of transcriptional activity. The data suggests that this loss of het-
erochromatin may be related to the cancerous phenotype itself.
Cancer progression often is associated with epigenetic changes
including loss of heterochromatin with concomitant increase in
transcription of proteins involved in numerous signaling path-
ways [64], [65]. Our results in Fig. 4 show that it is uncommon
for FHB nuclei to have a chromatin distribution concentrated
exclusively at the nuclear periphery. The compact, dense chro-
matin (heterochromatin) seen in both the normal thyroid and
liver nuclei suggests greater areas of relative transcriptional in-
activity than their malignant/neoplastic counterparts. The geo-
metric approach thus provides a new and useful tool to enable

visualization of changes in nuclear structure within a group of
nuclei from specific pathological lesions. These methods could
be employed across any group of pathological lesions providing
a visual descriptor of important diagnostic nuclear features that
up to this point have not been described. In addition, the infor-
mation provided by these geometric approaches could be used
as a stepping stone for further investigation into the molecular
and transcriptional control of both normal and neoplastic nuclei.

Currently the major drawback of the approach we propose is
the large computational cost. The codes we used were imple-
mented with Matlab 2008a on a laptop with 2.2 CPU and
2 GB memory. It usually takes 60 s to compute the distance
between two images under OT metric with 800 point masses
(see Section III-A). We note however, that recent advances show
promise to reduce the computational time of such metrics by an
order of magnitude [66], [67]. In addition, we note that other
metrics that are less computationally intensive (see [68] for ex-
ample) could be used within the same framework (in combina-
tion with coarsely computed OT distances, for example).

While in all cases available in this dataset both feature-based
and OT metrics were able to correctly classify each case to it’s
gold standard (diagnosis) using a voting procedure, in some
cases, the feature-based metric seemed to outperform the OT
metric in terms of average nuclear classification accuracy. We
analyzed the data visually and detected two possible causes for
it. Firstly, for nuclei whose chromatin content seemed fairly uni-
formly spread throughout the nucleus, our particle-based ap-
proximation of that image could be improved by increasing the
number of particles. We recomputed the classification accuracy
of our liver dataset (the smaller of the datasets) utilizing OT
distances computed using particles (as opposed to

). This resulted in an increase of classification ac-
curacy of the OT by 2% and 3% for cases 2 and 5 of Table I,
respectively, while the accuracies for the other cases remained
the same. This suggests that the overall accuracy of the method
could be improved by using more particles to approximate each
nucleus. How much so in this application, however, is uncer-
tain. In general, most linear programming based solutions for
optimal transportation problems are of order computa-
tions (with being the number of particles chosen) [69]. In
our case, this means specifically that if we increase the particle
number from to , run times would be in-
crease by roughly 4 times. Upon visual inspection of the data,
we have also noticed that the OT metric seems somewhat sensi-
tive to nuclear size variations. This is evidenced in Fig. 5 where
Fisher LDA (using the OT metric) detected nuclear size varia-
tion as the most discriminating feature in the thyroid datset. We
investigated case 2 in this dataset, where the procedure using the
OT seems to have misclassified quite a few more nuclei than the
feature-based approach. For case 2 NL, for example, we have
noticed that all nuclei misclassified by the OT approach that
were correctly classified with the feature metric had a nuclear
area range of . A histogram analysis (not shown)
shows that this is more consistent with FA and FTC. For case
2 FA, similar observations can be made, where the OT metric
misclassified nuclei whose size was more consistent with the
FTC class. We point out again, however, that when all nuclei
for all cases, the overall accuracy of the OT metric seems to be
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as good or better than the overall accuracy obtained using the
feature-based metric.

Finally, the methodology we described above is quite gen-
eral in the sense that it depends only on accurate imaging of
the structures of interest. It could also be applied to similar nu-
clear morphology problems in other benign, pre-neoplastic, and
neoplastic (cancer) lesions. Although several of the methods
we described (including feature-based ones) were able to ap-
propriately classify the available testing data in the diagnostic
challenges we investigated, we expect this not to be the case
in more complicated diagnostic challenges. We also notice that
similar work has been applied to medical imaging problems at
the macroscopic scale [42] where the goal is to analyze and clas-
sify the different structures using other metric space (large de-
formation diffeomorphic metric mapping). Our future plans in-
cluding testing and validating our methods on larger data sets
(more human cases), as well as more difficult diagnostic chal-
lenges involving more types of tissues (classes).
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