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ABSTRACT

Image-based morphometry of cells, tissues, and organs is an im-
portant topic in biomedical image analysis. We propose a novel
method to characterize the morphological information that discrim-
inates between two populations of morphological exemplars (cells,
organs). We first demonstrate that the application of standard tech-
niques such as Fisher linear discriminant analysis (FDA) can lead to
undesirable errors in characterizing such information. We then de-
scribe an adaptation of the FDA technique that utilizes a least squares
projection error to regularize the final solution. We show results
comparing the FDA, modified FDA, and principal component anal-
ysis (PCA) techniques utilizing a contour-based characterization of
both simulated and real images of cell nuclei.

Index Terms— Fisher linear discriminant analysis, Morpholog-
ical analysis, Data visualization

1. INTRODUCTION

Clinicians, biologists, and other researchers have long used informa-
tion about shape, form, and texture to understand biological differ-
ences between different biological structures [1, 2, 3]. Image-based
quantitative morphology is concerned with the application of statis-
tical analysis techniques to extract important information that char-
acterizes the distribution of such data. Early work often focused on
numerical feature-based approaches (e.g. measuring size, form fac-
tor, etc.) that aim to quantify and measure differences between dif-
ferent forms in carefully constructed feature spaces [3, 4]. Modern
approaches to this problem have shifted to viewing the entire mor-
phological exemplar (as depicted in a biomedical image) as a point in
a carefully constructed metric space [35, 6, 7]. Advantages of such ap-
proaches include the fact that little or no reduction of information is
involved (the entire image information can often be utilized to com-
pute the metric) and that deformations mapping one form to another
can often be computed, thus facilitating the application of geometric
techniques to understand the distribution of a given dataset.

At the microscopic level (cells and subcellular components) con-
tours and medial axis representations for each structure can often be
extracted and the PCA related techniques employed for character-
izing the distribution of each population of exemplars (e.g. type of
cell) [8, 9, 10]. Our group has also experimented with the applica-
tion of deformation and transportation-based metrics, together with
techniques such as multidimensional scaling and FDA, to character-
ize distributions of microscopic images of cell nuclei [11, 12]. At
the macroscopic level several groups have utilized medial axis and
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deformation-based metrics to quantify the differences between two
anatomical exemplars [7, 13, 14]. In addition, when a linear embed-
ding of the data is assumed the PCA technique is often utilized to un-
derstand the main modes of variation present in the data [13, 15, 16].
While useful for visualizing main modes of variation for a group
of cells, sub-cellular structures, or organs, the PCA technique is of-
ten inconclusive when applied to quantity differences in form be-
tween two or more populations. Linear discriminant analysis tech-
niques (e.g. FDA [3]), on the other hand, are specifically designed
for computing a linear subspace representation (arranged in order of
importance) that directly measures how groups of structures differ
according to a given metric. In this work, however, we show that
when applied to real image data, such discriminant techniques can
lead to erroneous interpretation about the differences in form that
are actually present in the data. We propose a modified Fisher crite-
rion by combining the traditional Fisher discrimination metric with
a least squares projection error and show that this leads to a regular-
ized eigen decomposition problem. We show the application of the
technique in contours obtained from real and simulated datasets and
demonstrate how our technique can help reduce some of the errors
encountered when applying the standard FDA technique.

2. METHODS

2.1. Linear metric space-based analysis of biomedical images

The method we describe can be applied whenever a linear embed-
ding for the image data can be assumed and obtained. That is, given
an image [; depicting a cell or organ, a one-to-one mathematical
function f can be computed to map each image to a linear space.
Mathematically: f(I;) = x;, with x; € R™, with m the dimension
of the linear space. In addition, we assume the function g that maps
any coordinate x in the linear space back to the unique correspond-
ing image (biological form) is also known. That is I = g(x). In this
work we utilize contours obtained from image data as the linear rep-
resentation of each image. However, other linear embeddings could
also be utilized [13, 15, 16].

In the computations we present to utilize the contour-based met-
ric [9, 10, 17] to characterize the shape of nuclear image data. Briefly,
after segmentation and pre-processing (see section 3.2 for details), a
binary mask containing each nucleus is obtained. The mask is then
eroded by one pixel and the result subtracted from the initial mask to
obtain pixels depicting the contour of each nucleus. The contour is
then converted to a polar coordinate system with respect to the cen-
ter of the contour, and n points are sampled (separated by equally
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distant angles) to obtain a parametric representation of each image.
This procedure maps each image I; to a point X; in the standard
R*™ vector space. As our purpose here is to quantify shape, a point
x € R>" can be plot on the same coordinate system as the given
image data to obtain a visualization of the corresponding shape.

2.2. Fisher discriminant analysis

Given a set of data points x;, for 2 = 1,--- | N, with each index ¢
belonging to class ¢, the problem proposed by Fisher [3, 18] relates
to solving the following optimization problem
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where Sp = >, Ne(p. — %)(p, — %) represents the “between
class scatter matrix”, Sw = >, >, (xi — p.)(xi — p,)" rep-
resents the ”within classes scatter matrix”, X = % Zivzl X; repre-
sents center of the entire data set, NV, is the number of data in class ¢
and g, is the center of class c. The maximization problem above is
equivalent to the following problem [18]:
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w' = argmax J(w) = WTSww (2)
where St = 3N | (x; — %)(x; — X)” represents the “total scatter
matrix”, and St = Sp 4+ Sw. The criterion is then optimized by
solving the generalized eigenvalue problem [18] Stw = ASww,
and selecting the eigenvector associated with the largest eigenvalue.
In our paper, we focus on the two-class problem, the above discus-
sion is limited to computing a single "most discriminating” direction.
In a multiple-class problem, a basis for a linear discriminating sub-
space is sought, the criterion (2) can be modified and the solution is
given by the “top” eigenvectors of the generalized eigenvalue prob-
lem. Usually, we subtract each data by this mean X, = x; — % before
we compute the scatter matrices Sw, Sg, St.

2.3. A simulated data example

We simulated two classes of circle shapes (100 circles for each class)
with different radii. For one class, the radii were uniformly dis-
tributed from 0.42 to 0.62 pixels while for the other class, radii
ranged from 0.28 to 0.48 (also uniformly distributed). If we use
n sample points on the contour, each circle can be mapped to a point
in space R*™. The data, however, occupies a linear one dimensional
subspace of R*™, since the points depicting any circle can be com-
puted by a linear combination between any two circles with different
radii. Because only one parameter (radius) varied in our simulation,
this linear subspace is one dimensional. For the purpose of visual-
izing the concepts we are about to describe, each data point (circle)
can then be uniquely mapped to the two dimensional vector space
shown in Figure 1 where the Y'1 coordinate represents the y coordi-
nate of the top most sample point on the circle, while the Y2 coor-
dinate represents the y coordinate bottom most sample point. From
the coordinates x; = (Y'1;,Y2;)7 any circle can be reconstructed.
The solution w™ of the FDA problem discussed above can be
visualized by plotting x, = X + yw™ for some range of b. Figure
1(A) contains the circles correspinding to x-, for =30 < v < 30,
where o is the standard deviation (square root of eigenvalue ¢). Vi-
sual inspection of the results in Figure 1(A) quickly reveals the prob-
lem. The method indicates that circle translation in combination of
a change in size is the geometric variation that best separates the
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Fig. 1. Discriminant information computed for simulated data set.
For (A) and (B), each column shows the result of adding mean
shapes with different variations along the computed directions. A:
Visualization of computed most discriminant direction by directly
applying FDA. B: Visualization of computed most discriminant di-
rection by our modified FDA method. C: Plot of two sample points
on the contour for the whole data set (Please see text for detail).

two distributions according the Fisher criterion. While such a direc-
tion may allow for high classification accuracy, by construction, the
data contained no variation in the position (translation) of the cir-
cles. We can therefore understand that such results are misleading,
since the translation effect is manufactured by the FDA procedure
and does not exist in the data. The problem is illustrated in part C of
the figure, where the two distributions are plotted, together with the
solution by the Fisher method (dotted blue line): the distribution of
datapoints do not lie on or near the direction computed by FDA.

2.4. A modified FDA criterion

The FDA criterion can be modified by adding a term that penalizes”
directions w that do not pass close to the data. More specifically,
we propose to combine the standard FDA criterion with a term that
measures the distance of each data point to the computed direction
w. Mathematically, an arbitrary line in the shape space R*™ can be
represented as A\w -+ b, with line direction and offset w,b € R*",
X € R. The distance from a data point x; in the shape space R*"
to the line can be found by solving A in the following optimization
problem, miny [AwW + b — x;||%2,. The solution is A} = —(b —
x;)Tw/(wTw). Therefore, the squared distance d; from the point
x; to the line is d? = || A}w + b — x;||*. Substituting A}, we have:
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For a data set of IV points, the sum of squared distances from each
point in that data set to that line is:
)} 3

N N
Zd? = Ztr [(b —x:)(b—x;)" (I —
i=1 i=1
Recall that our goal is to maximize the Fisher criterion defined in
equation (2) while minimizing the sum of squared distances defined
in equation (3) to guarantee the line is well populated by the data.
We note that the Fisher criterion is independent of the offset b and
the term defined in equation (3) contains b multiplying the terms
containing w. Since it should be minimum for all possible choices
of w, b can be chosen independently of w and can be shown to be
(we omit details of the derivation for brevity): b* = SV | x;/N.
This indicates that this line must go through the center of the data
set. Equation (3) can then be written as:
) } “
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where St = Zfil tr [(b* —x;)(b* —x;)"] is the same “scat-
ter matrix” as in equation (2). The optimization problem defined in
equation (4) is equivalent to:

t(

Both equation (4) and equation (5) will give a big value if the line
go far away from the data populations. To simplify our solution (see
section 2.5), we use equation (5) as the penalty term.

WWT

wlw

N

. 2

min d; =

w,b=Db* 4 w
i—1

wl Srw
wlw

. WTSTW
min —_—
w

&)

wlw

We know that maximizing the Fisher criterion defined in equa-
tion (2) is equivalent to maximizing *ﬁ [3, 18]. To maximize
the fisher criterion (discriminating information) and minimize the
penalty term defined in equation (5) at the same time, we can define
the modified Fisher criterion as follows:
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where « is a scalar weight term.

2.5. Solution for modified FDA

The optimization problem defined in equation (7) can be simplified
as the following optimization problem:

wl Srw

{ wT (Sw +al) w
where I is the identity matrix. The solution for the problem above
is also given by a generalized eigenvalue decomposition Sw
A (Sw + oI) w. This solution is similar to the solution of the tradi-
tional FDA problem, with the regularization provided by oI [18, 19].
However, we provide a geometric interpretation of this regulariza-
tion term, which is, as described above, the minimization of the least
squares projection error.

max
w
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3. RESULTS

3.1. Simulated experiment

We test the modified FDA method above on the simulated dataset
depicted in Figure 1. We can compare the result of applying the
FDA method (Fig 1 part A) with our modified FDA method (with
a = 0.01) in Fig 1(B). We can see the method we propose does
indeed recover the correct information that discriminates between
the two populations (in this case, the radii of the circles). While this
is not necessarily the most discriminating information, it is the most
discriminating information that is well populated by the data, in the
sense made explicit by equation (6). In this specific simulation the
modified FDA method yields the same result as the standard PCA
method would. However, as shown in the real data examples below,
that is not a general rule.

3.2. Real data experiments

We also apply our method on a real biomedical image data set to
quantify the difference, in nuclear morphology, between normal ver-
sus cancerous nuclei. The raw data consisted of histopathology im-
ages originating from five cases of liver hepatoblastoma (HB), each
containing adjacent normal tissue (NL). The data was taken for the
archives at the Children’s Hospital of Pittsburgh, and is described in
more detail in [12, 20]. The images were segmented by a semi au-
tomatic method involving a level set contour extraction. They were
normalized for translation, rotations, and coordinate inversions as
described in our earlier work [11, 12, 20]. The dataset we use here
consisted of 500 nuclear contours: 250 for (NL), and 250 for (HB).
Each image I; was mapped to a 180 dimensional vector x;.

In Fig 2(A), we demonstrate the first two modes of variations
computed by PCA. The first modes of variation is size and the second
is the elongation of the nuclei. In Fig 2(B), we demonstrate the dis-
criminating mode computed by our modified FDA (with a = 0.01).
For this specific cancer, we can see that size of the nuclei as well as
the protrusion and invagination of the nuclei are the discriminating
information. As in section 3.1, we also directly apply FDA on the
contours of data set. Some sample points on contours start to move
perpendicularly to the contour with relatively big variation, while
some remain unchanged. The direction computed by FDA does not
seem to capture visually interpretable information.

4. SUMMARY AND DISCUSSION

Quantifying the information that is different between two groups of
cells or organs is an important problem in biology and medicine.
‘We have shown that the application of the standard FDA criterion to
solving this problem (other linear discrimination methods can also
suffer from the same shortfalls) can lead to erroneous results in in-
terpretation. To solve this problem, we proposed a novel method
to characterize the morphological information that discriminates be-
tween two populations of morphological exemplars (cells, organs).
The method is based on the solution of a FDA criterion by adding a
penalty term composed of sum of squared distances from each point
in that data set to that line. The set of solutions given by our method
is dependent on the parameter « that weights the combination of the
two terms. It can be shown that when o = 0 the solution is given by
the traditional FDA method, while as o« — oo the solution approx-
imates the solution of the standard PCA method. We also showed
that the solution of the modified criterion is given by a “regular-
ized” eigen decomposition problem. While others have also used
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Fig. 2. Principle variations and discriminant information computed
for real liver nuclei data. Each column shows the result of adding
mean shapes with different variations along the computed directions.
A: First 2 principle variations computed by Principle Component
Analysis (PCA). B: Discriminant variation computed by our modi-
fied FDA method. We can see that size difference combined with
the protrusion and invagination of the nuclei are the discriminating
information. C: direction computed by the standard FDA procedure.
See text for more details.

O

the same regularized solution (see [19] for examples) we show that
this is equivalent to maximizing the FDA criterion while minimiz-
ing the error of the projection of the data. The regularization also
adds the convenience that it facilitates the numerical solution of the
associated generalized eigenvalue problem.

Results on simulated and real data confirm that our modified
FDA helps overcome the limitations of the standard FDA method.
In particular, the application of the standard FDA method to real
nuclear data seems to yield solutions that are far from being closed
contours. Results generated by applying our modified FDA criterion
on real liver nuclei data indicate that, in this specific liver cancer, the
size difference combined with the protrusion and invagination of the
nuclei represents the most discriminating information between these
two sets of nuclei, that is actually present in the data.

Finally, we emphasize that although we have used contours ex-
tracted from image data as our linear embeddings, it is possible to
use the same method on other linear embeddings [13]. For some
such linear embeddings, however, distance measurements, projec-
tions over directions, etc., over large distances (large deformations)
may not be appropriate. In such cases we believe the same mod-
ified FDA method could be used locally, in an idea similar to that
presented in [21].
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