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Interpolation Artifacts in Sub-Pixel Image

Registration
Gustavo K. Rohde, Member, IEEE, Akram Aldroubi, and Dennis M Healy, Jr

Abstract

We consider the problem of registering (aligning) two images to sub-pixel accuracy by optimization

of objective functions constructed from the images’ intensity values. We show that some widely used

interpolation methods can introduce multiple local optima in the energy of the interpolated image which,

if not counter-balanced by other terms, can cause local optima in registration objective functions including

the sum of squared differences, cross correlation, and mutual information. We discuss different solutions

to address the problem based on high degree B-spline interpolation, low pass filtering the images, and

stochastic integration. Numerical examples using synthetic and real signals and images are shown.

Index Terms

Image registration; interpolation; artifacts; mutual information

I. INTRODUCTION

Image registration is the process of computing the spatial correspondence between two or more images.

Over the past few decades image registration methods have enabled the extraction of quantitative spatial

information from a series of digital images in a variety of settings in the technological and experimental
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sciences. They have been used extensively in remote sensing, computer vision, and medical imaging

applications. See [1], [2], [3] for comprehensive reviews.

There exist several different methods for image registration currently under research. In a broad sense,

these can be split into manual, semi-automatic, and automatic methods. Within the automatic class,

significant research efforts have focused on those which seek to compute the best alignment between

two images by optimizing some objective function quantifying the similarity between corresponding

intensity values in the two images. Research in the area, however, has revealed that standard approaches

to interpolation-based sub-pixel image registration can be sub-optimal due to the presence of so called

‘interpolation artifacts.’ As opposed to efforts towards analyzing the effects of noise on the performance

in registration algorithms (see Robinson and Milanfar [4] for an example), researchers have noted that

certain image interpolation algorithms cause systematic, artifactual, oscillatory behavior of many objective

functions. Ashburner and Friston [5] reported such oscillations in the sum of squared differences (SSD)

cost function while Pluim et al. reported these artifacts in the mutual information (MI) similarity measure

[6]. Naturally, artifactual oscillations induce local optima in the optimization procedure. Local optima in

automatic intensity-based registration methods are not desirable because 1) they may prevent the search

procedure from arriving at a global optimum and 2) even if the neighborhood of a global optimum can

be determined, the artifactual oscillations may prevent sub-pixel accuracy in the alignment procedure.

Several recent examples in the image registration literature present observations about interpolation

artifact problems together with ad-hoc techniques for reducing their impact. However, a general mathe-

matical explanation for such artifacts is yet to come forth that would provide quantitative understanding

and analyses of the proposed remediation. For example, Pluim et al. [6] observed that the artifacts in

the mutual information similarity measure are more pronounced when the pixel sizes in both images are

equal and proposed a modified sampling scheme to diminish the impact of these artifacts in registration.

Their proposal is one of a number of approaches (see also [7], [8]) in which the effects of artifactual

oscillations are reduced by computing the image similarity measure from samples taken from spatial

coordinates which do not align with the grid of the images. Another suggestion has been blurring (low-

pass filtering) the images in order to reduce the magnitude of the artifacts in the sum of squared difference

cost function [5]. These suggestions and others found in the literature are effective in varying degrees, but

to our knowledge there has been no careful mathematical analysis of the registration artifact phenomenon

to help us understand and validate the various proposals for reducing its impact.

In [9], [10] we proposed a unified explanation for the phenomenon and related the oscillatory behavior

of different objective functions such as the mutual information (MI), cross correlation (CC), and sum
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of squared differences (SSD) based on the energy of the interpolated signal. Our explanation, however,

was based on stochastic arguments in the sense that only effects of additive noise were considered. In

this work we expand our previous work and offer a more complete analysis of the phenomena, showing

that interpolation on noise is not the only cause of the artifacts. We note, however, that our analysis in

this paper is limited to showing that common interpolation schemes using the B-spline framework cause

oscillatory artifacts in the energy of interpolated signals. We also show that the energy of the interpolated

signal is present in the CC, SSD, and MI similarity measures discussed below. Thus, if left unbalanced

by oscillations in other terms (the analysis of which is beyond the scope of this paper), these oscillations

could cause local optima artifacts in the similarity measure.

We start by introducing the common methodology of image registration using B-spline interpolation

as the basis for our arguments. We then proceed to analyze the oscillatory phenomena of the mutual

information and related similarity measures. Algorithms for eliminating the artifactual local optima are

presented. Finally, results using simulated as well as real image data are presented followed by discussion

and conclusions.

II. NOTATION AND PRELIMINARIES

Let L2 define the standard space of measurable, square-integrable real valued functions g(x). The L2

norm is derived from the inner product:

〈g, h〉L2
=
∫ ∞
−∞

g(x)h∗(x)dx, (1)

‖g‖2L2
= 〈g, g〉L2

. (2)

The space of square summable discrete signals b[k], k ∈ Z, is denoted `2. The inner product in `2 is

defined by:

〈a, b〉`2 =
∑
k∈Z

a[k]b∗[k] (3)

while ‖b‖2`2 = 〈b, b〉`2 . The convolution between two discrete signals a, b ∈ `2 is denoted a ∗ b and given

by:

a ∗ b[k] =
∑
j∈Z

a[j]b[k − j]. (4)

The sequence b can be viewed as a discrete convolution operator characterized by its transfer function

B(z) =
∑

k∈Z b[k]z−k. If B has no zeros on the unit circle, and b ∈ `1 (all of the filters considered in

this paper satisfy these requirements), then the inverse operator (b)−1 exists and is uniquely defined by:

(b)−1←→1/B. (5)
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A. Basic methodology for image registration

We consider the problem of aligning digital images, considered as discrete signals on a d-dimensional

sampling lattice: s[k], k ∈ Zd ⊂ Rd. The goal in image registration is to compute the coordinate

transformation fθ : Rd → Rd (here f is parameterized by θ) that will bring the two images into spatial

alignment. For example, fθ could be translation or shifting of a function by a fixed offset value θ.

Loosely speaking, registration methods try to compute the spatial transformation f which makes the

intensity values of two images s and t similar:

s̃(fθ(m,n)) ∼ t(m,n), (6)

where in this case we work with the familiar d = 2 images, and the tilde over s indicates that, in general,

it is necessary to obtain the values for s on the transformed discrete lattice by some sort of interpolation.

To make sense of such a concept one must quantify the notion of similarity between the intensity

values t(m,n) and the transformed image values s̃(fθ(m,n)) We focus on those methods which seek the

best choice of alignment fθ by optimizing some objective function (maximizing some similarity measure)

between these two sets of intensities with respect to the parameter θ.

This raises two immediate implementation issues. One is the choice of the objective function for

assessing similarity between t and the transformed version of s. The second is the mechanism for

evaluation of these transformed values s̃(fθ(m,n)), as fθ(m,n) need not lie on the original sampling

lattice Z2. Consider for instance our example of translation by θ with θ a fraction of a pixel, say θ = 1/2.

In that case the transformed grid points are completely disjoint from the original grid where our known

sample values live. In the following subsections we briefly review some relevant aspects of the standard

interpolation approach for spatially transforming an image and then take up some key properties of the

standard choices of objective functions.

With these implementation issues in hand, we can give a general problem statement of the registration

task: given a pair of digital images s(m,n), t(m,n), m,n ∈ Z, find the function fθ, or alternatively, the

parameter θ, so that some functional Ψ(θ) of the digital image data is optimized. The functional Ψ(θ)

usually contains at least two terms:

Ψ(θ) = Ψdata(θ) + Ψconstraint(θ). (7)

The first term, known as the image force, uses the image similarity objective function mentioned above

and represents the influence of the image data over f in the minimization, while Ψconstraint restricts the

solution space of allowable transformations so as to make the problem well posed. While both Ψdata
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and Ψconstraint are important in determining the solution f in this work we concentrate on the data

term Ψdata exclusively. Our first goal for the paper is to show that this term may contain artifactual

fluctuations creating false local optima when standard interpolations strategies are used. This explains

certain commonly observed difficulties encountered in sub-pixel registration applications. Our second

objective is to use our new understanding of this problem to inform the creation of novel registration

methods providing improved performance by minimzing these difficulites.

B. Cardinal B-spline interpolation for registration

As discussed above, sub-pixel accurate image registration requires one to be able to compute the

value of a sequence s in ‘between’ sample values k ∈ Z. To that end we consider the widely used

B-spline-based interpolation.

We look at the B-spline family of basis functions, where β0(x) is the centered, normalized, rectangular

pulse evaluated at x and βn(x) = βn−1 ∗ β0(x), while n refers to the degree of the basis function. The

corresponding function space is:

V (βn) =

{
s̃(x) =

∑
k∈Z

c[k]βn(x− k) , c ∈ `2

}
. (8)

Given a sampled signal {s[k]}k∈Z we can find its interpolant in this space in the classical fashion by

solving a linear system to find the coefficients {c[k]}k∈Z. Alternatively, the continuous model can also

be efficiently obtained through inverse filtering [11], [12] by:

s̃(x) =
∑
k∈Z

s[k]ηn(x− k). (9)

ηn(x) is known as the cardinal B-spline interpolator and is given by:

ηn(x) =
∑
k∈Z

(bn)−1[k]βn(x− k), (10)

where bn[k] = βn(x)|x=k. The basis functions ηn are interpolating since

ηn(k) =

 1 if k = 0;

0 for all other k ∈ Z.
(11)

Cardinal B-splines of different degrees are displayed in figure 1.

Extension to multiple dimensions is possible through the use of tensor product splines simply obtained

by cross multiplication of the one-dimensional functions of the individual index variables:

s̃(x, y) =
∑
p,q∈Z

s[p, q]ηn(x− p)ηn(y − q). (12)
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Fig. 1. Cardinal B-splines of degree 1, 3, and 7.

C. Objective functions for registration

Consider two discrete real-valued, one dimensional signals {s[k]}k∈Z, {t[k]}k∈Z. One natural metric

for computing the spatial transformation fθ : R → R would be the `2 norm of the difference between

{s̃(fθ(k))}k∈Z and {t[k]}k∈Z:

Ψdata(θ) = SSD(θ) =
∑
k∈Z

(s̃(fθ(k))− t[k])2

= ‖t‖2`2 + ‖s̃(fθ)‖2`2 − 2 〈t, s̃(fθ)〉`2

(13)

where s̃(fθ) is short notation for the discrete signal generated by {s̃(fθ(k))}k∈Z. Note that in order to

register two discrete signals one would minimize the SSD between them. Alternatively, one may register

two discrete signals by maximizing their cross correlation:

Ψdata(θ) = CC(θ) =
〈s̃(fθ), t〉`2
‖t‖`2‖s̃(fθ)‖`2

. (14)

Alternatively, one may also consider a slightly different normalized error described in [13] that has the

same optimum as equation (14). In either case, our initial intuition may be that, were we dealing with

signal translations for example, the inner product 〈s̃(fθ), t〉`2 is the only term which varies with fθ and

therefore is the only contributor to the optimization of alignment. The other components are the norms

of t and s(fθ). When considering signals of infinite length, and thus neglecting considerations due to

changes in the regions of overlap, ‖t‖ is clearly independent of θ and, at first glance, it also appears

that the same should hold for ‖s̃(fθ)‖ for the most commonly used alignments fθ. Indeed, if we picture

registration as aligning two interpolated surfaces with heights given by the respective intensity levels,

then aligning with rigid motions fθ, (rotations and translations) acting on the image surface s, certainly

does nothing to change its energy or L2 norm.
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In fact we are mislead by this continuum picture: we shall see that even rigid motions induce significant

variations in ‖s̃(fθ)‖2`2 when low degree interpolation is used to evaluate it, and that this does cause

oscillatory artifacts in sub-pixel registration.

We shall show a similar phenomenon is obtained in the case of mutual information similarity (MI)

measure, the other widely used objective function candidate, despite its significantly different form from

correlation and SSD. Let Sθ and T represent random variables associated with the discrete signals

{s̃(fθ(k))}k∈Z and {t[k]}k∈Z, respectively. The mutual information objective function is given by

Ψdata(θ) = MI(Sθ, T )

=
∫ ∫

pSθ,T (µ, υ) log
(
pSθ,T (µ, υ)
pSθ(µ)pT (υ)

)
dµdυ

(15)

where integrals are taken from −∞ to ∞. pSθ,T (µ, υ) stands for the joint probability density function

(pdf) of the intensity values of images Sθ and T , and pSθ(µ) and pT (υ) stand for their respective marginal

distributions. An alternative, entirely equivalent, formula is given by:

MI(Sθ, T ) = H(T ) +H(Sθ)−H(T, Sθ), (16)

where H(T ) stands for the differential entropy of random variable T , and H(T, Sθ) (their respective

definitions are given in appendix A) the joint differential entropy between random variables T and Sθ.

Estimates of the mutual information similarity measure are usually computed from image pixel values

through histograms [14] or Parzen windowing techniques [15]. This similarity measure is based on

advanced statistics and information theory [16] and their introduction as a similarity measure for image

registration problems is due to Collignon et al. [17] and Viola and Wells III [15]. For a review of mutual

information-based image registration methods in medical imaging see [18].

Without loss of generality we assume that the mean of each discrete signal is zero, while the standard

deviation of the pixel values is one. Let Sθ now represent the random variable associated with a single

signal value s̃(fθ(k)). If (strict) stationarity is assumed, Sθ can be used to represent the random variable

for all samples in the same signal. Similar statements can be made with regards to image (signal) t[k]. Let

pSθ,T (µ, υ) in (15) be given by a bivariate Gaussian distribution. Then it can be shown that the mutual

information is given by [16]:

I(T, Sθ) = −1
2

log
(
1− ρ2(θ)

)
, ρ(θ) = ξ(θ)/σTσSθ (17)

where ξ(θ) stands for the covariance between random variables Sθ and T , and σ2
T and σ2

Sθ represent

their respective variances. These quantities can be estimated from a set of samples s̃(fθ(k)) and t[k],
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k ∈ Ω:

ξ(θ) =
1
N

∑
k∈Ω

s̃(fθ(k))t[k], (18)

σ2
T =

1
N

∑
k∈Ω

|t[k]|2, and (19)

σ2
Sθ =

1
N

∑
k∈Ω

|s̃(fθ(k))|2, (20)

where Ω represents a set of predefined coordinates and N = |Ω|. Clearly, σ2
Sθ is related to ‖s̃(fθ)‖2`2 via:

σ2
Sθ =

1
N
‖s̃(fθ)‖2`2 −

1
N

∑
k/∈Ω

|s̃(fθ(k))|2. (21)

Furthermore, σ2
Sθ = 1

N ‖s̃(fθ)‖
2
`2

if s̃(fθ) has compact support in Ω.

Finally, when the distribution of the intensity values of the images pSθ(µ) and pT (υ) (and their joint

distribution) are not Gaussian, equation (17) does not hold. However, as shown in appendix A, the mutual

information can be expanded as:

MI(θ) = IG(θ) +R(θ) (22)

where IG(θ) is the Gaussian approximation to the mutual information given in (17). Therefore, in a

general sense, −1
2 log

(
1− ρ2(θ)

)
can be interpreted as an approximation to the mutual information

based on the second order (variance and covariance) statistics.

Note that in all cases (SSD, CC, and MI), estimates of the objective function involve the quantity

‖s̃(fθ)‖2`2 . In the next section we show that estimates of ‖s̃(fθ)‖2`2 computed using B-spline interpolation

are not independent of the parameter(s) θ. Therefore, if these oscillations are left unbalanced by other

terms, local optima are likely to be introduced in the objective function being optimized as shown below.

However, we note that, although some computational examples concerning the term 〈s̃(fθ), t〉`2 are shown,

the mathematical analysis to follow is not complete in that it neglects the several other terms that are

present in the three different similarity measures we discuss (e.g. 〈s̃(fθ), t〉`2 ,R(θ),Ψconstraint(θ)). In

the case of the MI similarity measure, for example, it has been noted previously that it may suffer from

artifacts stemming from changes in regions of overlap [19], as well as the number of histogram bins used

in the computation [7]. We do not make an attempt to explain such sources of artifacts and a complete

analysis of all components of all of the similarity measures discussed above is beyond the scope of

this study. Rather, below we concentrate on explaining how oscillations in ‖s̃(fθ)‖2`2 can contribute to

systematic oscillation artifacts in the similarity measures discussed above.
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III. OSCILLATION ARTIFACTS

In this section we describe the effects of B-spline interpolation on the objective functions used in image

registration described above. For the moment, let fθ(x) represent a pure translation in one dimension:

fθ(x) = x+ θ. (23)

Using the B-spline interpolation model above, a translated signal {s̃(k + θ)}k∈Z can be computed by:

s̃(k + θ) = ηnθ ∗ s[k] (24)

where we have used the notation ηnθ [k] = ηn(k + θ). Note that all three objective functions discussed

depend on the quantity ‖s̃(fθ)‖2`2 :

‖s̃(fθ)‖2`2 = 〈s̃(fθ), s̃(fθ)〉`2 =
1

2π

∫ π

−π
|ŝ(ω)|2|η̂nθ (ω)|2dω (25)

where

ŝ(ω) =
∞∑

k=−∞
s[k]e−iωk. (26)

is the discrete time Fourier transform (DTFT) of sampled signal s. The DTFT of the shifted, sampled,

cardinal B-spline interpolator is given by:

η̂nθ (ω) =
∞∑

k=−∞
ηn(k + θ)e−iωk

=
∑
k∈Z

(φ(ω − 2πk))n+1

Bn(ω − 2πk)
e−j(ω−2πk)θ (27)

where

φ(ω) =
sin(ω/2)
ω/2

. (28)

and Bn(ω) is the DTFT of the sampled B-spline of degree n , bn[k] = βn(x)|x = k which was described

in section II. Clearly, because of the interpolation condition (11), we have that η̂n0 (ω) = 1. It is also not

hard to check that if θ ∈ Z, |η̂nθ (ω)| = 1. This implies that for whole pixel uniform translations, the

energy of the translated signal as expressed in equation (25) remains constant. This is not the case for

sub-pixel translations. Figure 2 contains the frequency response |η̂nθ (ω)| for different translation values

θ with n = 3 (part a), and different degrees at θ = 0.5 (part b). It is clear that the energy of the

translated signal using B-spline interpolation is not constant with respect to the translation value θ. More

specifically, signal translation using low degree (1 or 3, for example) interpolation involves low-pass

filtering the data, which, depending on the frequency content of the original signal, will affect (diminish)
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Fig. 2. Frequency response for cardinal B-spline translation filters for different translation values (a) and degrees (b).

Fig. 3. Plot of
R π
−π (1− |η̂nθ (ω)|)2 dω for different degrees n and different translation values θ.

its `2 norm. The overall effect will be a periodic (with period one sample or pixel) oscillation in the

signal’s `2 norm.

In order to avoid oscillation artifacts due to variation in the signal’s `2 norm it would be necessary that

η̂nθ be as close as possible to the ‘all pass’ filter, for any θ. Thus one useful figure of merit for evaluating

the oscillatory behavior that B-spline interpolators may cause in registration objective functions is∫ π

−π
(1− |η̂nθ (ω)|)2 dω. (29)

Using equation (27) this quantity was evaluated numerically for different translation values θ and different

degrees n. Results are shown in Figure 3. As Figure 3 shows, higher degree interpolation can be used to

lessen the oscillatory behavior of the objective function. This can be intuitively understood by observing

that cardinal B-spline interpolators converge to the ideal ‘sinc’ interpolator as n → ∞ (see Theorem 1

in [20]). The frequency response of the ideal sinc interpolator is an all pass filter and thus

lim
n→∞

∫ π

−π
(1− |η̂nθ (ω)|)2 dω = 0, ∀θ. (30)

IV. STRATEGIES FOR AVOIDING LOCAL OPTIMA

As noted above, the effects of translating a sequence s̃(k) by θ on the `2 norm (energy) of the

sequence will depend both on the frequency content of the original sequence as well as the degree of
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the interpolating cardinal B-spline. Translation of a data sequence, when implemented by resampling

a low-order interpolation of the data, tends to attenuate any high frequency component present in the

original sequence. If no high frequency components are present in the original data, translation via low

degree interpolation may not have a strong effect on its `2 norm. If, however, high frequency components

are present in the original data, other alternatives must be sought. Clearly, ideal interpolation using the

sinc kernel (sincθ(x) = sin(π(x + θ))/(π(x + θ))) would address the issue since it has a perfectly flat

frequency response for any value of θ. Sub-pixel accurate registration methods using sinc-type (Dirichlet)

interpolation kernels can be implemented efficiently through the use of the Fast Fourier Transform (FFT)

in the phase correlation method [21] and more recent extensions [22], [23]. However, such methods

are often limited to pure translations and similar solutions for registration problems using more varied

spatial transformation (affine, nonrigid) are not available. For these applications one must use truncated

versions of the kernel which can be overwhelmingly computationally intensive, especially for nonlinear

optimization problems such as nonrigid registration.

Two other techniques can be used to avoid oscillation artifacts. The first technique would be to choose

the degree n of the interpolating spline so that |η̂nθ (ω)| ∼ 1, ∀θ, over the frequency content of the original

data. High degree B-spline interpolation, however, is also computationally expensive. This is due to the

fact that the higher the degree of the B-spline, the wider its support. Thus, by increasing the degree of

the B-spline being used to interpolate the data, computing each s̃(fθ(k)) involves more additions and

multiplications. Given a fixed degree n chosen perhaps based on computational complexity considerations,

another alternative is to low-pass the sequence of data to be interpolated so that its frequency content falls

entirely within regions where |η̂nθ (ω)| ∼ 1, ∀θ. Low-pass filtering the data prior to registration would

reduce the magnitude of the oscillation artifacts. However it could also throw away high frequency

information which could be used in the matching process. Therefore an iterative procedure such as the

one described in [24] whereby low resolution (coarse) versions of the images can be used in the first few

iterations to find an approximate solution is attractive for avoiding such artifacts. The resolution can then

be increased, and optimization reinitialized using the starting point obtained from the previous iteration.

A ’rule of thumb’ for avoiding interpolation artifacts in the SSD objective function, for example, can

be devised by looking at the requirement that a local optima exist. Taking the first derivative of the SSD

objective function with respect to translation parameter θ:

d‖s̃(fθ)‖2

dθ
= 2

d 〈t, s̃(fθ)〉`2
dθ

(31)

We now consider an idealized experiment where two identical signals are matched (t = s). In the
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neighborhood θ = 0 in order to avoid a local optima we must have that

2
d 〈t, s̃(fθ)〉`2

dθ
>
d‖s̃(fθ)‖2

dθ
. (32)

Naturally, the direction of the inequality above will depend on whether θ is positive or negative (which

in turn depends on our definition of fθ). Using (24), the requirement in equation (32) can be stated as〈
At, η

n
θ
′〉
`2
>
〈
ηnθ ∗At, ηnθ

′〉
`2
∀ θ < 0 (33)

where

ηnθ
′[k] =

dηn(x)
dx

|x=k+θ (34)

and At[k], k ∈ Z is the autocorrelation sequence for t defined as

At[k] =
∑
j∈Z

t[j]t[j − k]. (35)

We note that the inequality above can be represented in Fourier domain, providing an alternative inter-

pretation. Using the same assumptions as above we have that

〈
|t̂|2,

dη̂nθ
dθ

(η̂n
∗

θ − 1)
〉
L2,[−π,π]

> 0. (36)

Thus |t̂|2, through the L2[−π, π] inner product, defines a positive cone for dη̂nθ
dθ (η̂n

∗

θ − 1). If these two

functions are orthogonal for some choice of θ near θ = 0, then a local optimum occurs.

A similar requirement for the CC objective function can be stated as〈
At, η

n
θ
′〉
`2
>

〈At, ηnθ 〉`2〈
ηnθ ∗At, ηnθ

〉
`2

〈
ηnθ ∗At, ηnθ

′〉
`2
. (37)

By identifying ρ(θ) in equation (17) with CC(θ) in (14), a similar bound can be derived for the gaussian

portion (IG(θ)) of the MI similarity measure. However, in this case the bound must be thought of as an

approximation since IG(θ) is only a second order (Gaussian) approximation for MI(θ).

Equations (33) and (37) can be used to estimate the degree of the B-spline interpolation method that

would be necessary for avoiding oscillation artifacts when computing the registration objective function

of a signal and a shifted version of the signal, for some predetermined range of θ. Given an image or

signal s which is to be translated to match another similar signal, both sides of the inequality (33), for

example, can be plotted as a function of θ, for increasing values of n. Specific values for n for which

(33) is satisfied (for all θ of interest) can then be used to perform the matching without local optima

artifacts.
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Finally, we note that since as n tends to infinity, the frequency response of the translation filter ηnθ

tends to the frequency response of the ideal (sinc) interpolator [20], we have that

lim
n→∞

d‖s̃(fθ)‖2

dθ
= lim

n→∞

〈
ηnθ ∗At, ηnθ

′〉
`2

=
1

2π

∫ π

−π
|t̂(ω)|2iωdω = 0. (38)

Computational examples showing how low-pass filtering the data prior to interpolation, as well as

higher degree interpolation, can be used to avoid oscillation artifacts will be shown later. First, however,

we describe a technique (stochastic integration) which allows one to use low degree interpolation, even

with signals with high frequency components, without significant interference from the oscillation artifacts

discussed earlier.

A. Stochastic integration

Here we show that the energy of a signal interpolated using random sampling methods [8] is, in theory,

independent of the translation being applied. Expanding ‖s̃(fθ)‖2`2 we have

‖s̃(fθ)‖2`2 =
∑
p∈Z

∑
q∈Z

s[p]s[q]
∑
k∈Z

ηn(k + θ − p)ηn(k + θ − q). (39)

Clearly, the source of the problem is the fact that
∑

k∈Z η
n(k+θ−p)ηn(k+θ−q) is not independent of θ.

Approximating this term with its continuous version would avoid the oscillation artifacts aforementioned

since ∫ ∞
−∞

ηn(x+ θ − p)ηn(x+ θ − q)dx =
∫ ∞
−∞

ηn(x− p)ηn(x− q)dx. (40)

Replacing discrete sums in the SSD and CC objective functions with continuous integrals, however, would

significantly add to the computational complexity of all but the most trivial image registration problems.

Moreover, in the case of mutual information computations with histograms or Parzen windows, such

continuous formulation would be unfeasible.

We now show that Monte Carlo methods can be used to compute approximations of the continuous

integral above which do not oscillate as a function of θ, for any given n. Monte Carlo methods are a class

of computational algorithms that have found applications in several areas of exact sciences, including

integration of multidimensional functions. Suppose we have a bounded function ϕ and we wish to find

out its integral over Ω. The basic result of Monte Carlo integration is that this integral can be estimated

by first generating a set of pseudo-random numbers ak, k = 1, · · · ,M uniformly distributed in Ω and

then using
|Ω|
M

M∑
k=1

ϕ(ak). (41)
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In the sense of expectations, the sum above approximates the value of the integral since:

|Ω|
M

M∑
k=1

ϕ(ak) ≈ |Ω|E{ϕ(a)}

= |Ω|
∫

Ω
ϕ(a)pa(a)da

=
∫

Ω
ϕ(a)da (42)

where pa(a) = 1/|Ω|. The standard deviation of the random variable in (41) is O(M−1/2). Therefore

the error in the value of the integral computed using this method can be expected to be of this order of

magnitude.

Now let ϕ(a) = ηn(a − p)ηn(a − q). Because a is a random variable uniformly distributed in Ω we

may use another random variable a+θ where θ is a deterministic constant and a+θ is a random variable

uniformly distributed in Ω (ignoring edge effects). Clearly, ignoring edge effects, E{ϕ(a)} ≈ E{ϕ(a+θ)}.

Therefore we have:

1
M

M∑
k=1

ϕ(ak) ≈
1
M

M∑
k=1

ϕ(ak + θ) and (43)

M∑
k=1

ηn(ak − p)ηn(ak − q) ≈
M∑
k=1

ηn(ak + θ − p)ηn(ak + θ − q). (44)

We conclude that if uniform distribution-based stochastic methods are used the oscillations described

above do not occur. Thus we define the stochastic sum

〈s, t〉MC =
∑
k∈Z

s̃(ak)∗t̃(ak) (45)

where s̃(x) and t̃(x) refer to the interpolated value defined in equation (9), and ak refers to a uniformly

distributed random coordinate. As before, we define ‖s‖2MC = 〈s, s〉MC and henceforth whenever we

speak of a similarity measure computed using Monte Carlo integration, we replace 〈s, t〉`2 with 〈s, t〉MC

where appropriate. Finally, note that all conclusions regarding stochastic integration translate without

problems to dimensions 2 and higher, since we are using separable B-spline interpolation.

B. Constant Variance Interpolation

Recent studies have shown that statistical properties (e.g. variance) of images are not constant with

respect to interpolation-based spatial transformations of image data and that this could have a deleterious
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effect on standard operations such as image registration [9] as well as model fitting [25]. Subsequently

researchers have begun tailoring basis functions to meet the constant variance requirement [26], [27] in an

effort to avoid such artifacts. In this section we show that the constant variance requirement is necessary

but not sufficient for avoiding the oscillations in the energy of the interpolated signal, as described above.

Let ζ(x) represent an interpolating basis function with which one may implement a pure translation by

an arbitrary shift θ. Assuming a stationary, zero mean, random field, the constant variance requirement

for translating the field can be expressed as
∑

k∈Z[ζ(k + θ)]2 = 1, for all θ (see [9] for a derivation

and for plots of this quantity for several popular basis functions). Using Parseval’s relation the constant

variance requirement can be written as

‖ζ̂θ‖2L2[−π,π] = 2π (46)

for all θ and where, once again ζ̂θ(ω) =
∑∞

k=−∞ ζ(k + θ)e−iωk. Clearly, basis functions that have a

flat frequency response (that is |ζ̂θ| = 1) for all θ satisfy this requirement but so do many other basis

functions (an example is shown below). As we have shown above, basis function that do not have a flat

frequency response for all translation values θ run the risk of changing the value of ‖s̃(fθ)‖2`2 as a function

of θ thus possibly introducing oscillatory artifacts in the objective function if these oscillations are not

balanced by oscillations in other terms. Naturally, constant variance interpolation methods will be suitable

(maintain the energy of the signal) for translating signals whose whose spectrum is flat (i.e. |ŝ| = c with

c some constant) as can be seen by inserting eq. (46) into (25). White noise satisfies this requirement,

for example. However it is not customary for either natural or biomedical images to possess a perfectly

flat frequency spectrum. Thus we conclude that constant variance interpolation, though necessary, is not

sufficient to avoid interpolation artifacts in ‖s̃(fθ)‖2`2 for arbitrary signals (images) s. To demonstrate

this, below we show a computational example involving the use of the following basis function:

ζ(x) =



a0(x) , 0 ≤ |x| ≤ 1
2 ;

1 + 2c(a1(x))− a1(x) , 1
2 < |x| ≤ 1 ;

−c(a2(x)) , 1 < |x| ≤ 3
2 ;

−c(a3(x)) , 3
2 < |x| ≤ 2 ;

0 , 2 < |x| .

(47)

The definitions above are: a0(x) = 1−κx2, a1(x) = 1−κ(1− |x|)2, a2(x) = a1(x), a3(x) = 1−κ(2−

|x|)2, κ = 3−
√

12
2 , and
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c(a) =
−4(1− a) +

√
12(1− a)2 − 48(a2 − a)

12
. (48)

The basis function defined above can be shown to satisfy both the constant variance requirement as

well as the partition of unity requirement
∑

k∈Z[ζ(k + θ)] = 1, ∀θ ∈ R, it is continuous, has compact

support in [−2, 2], is interpolating, but it is not differentiable everywhere. However, as clarified in the

computational example shown below, these properties are not sufficient for avoiding the interpolation

artifacts mentioned above.

V. COMPUTATIONAL EXAMPLES

Here we include a series of computational examples, both with synthetic and real signals and images,

aimed at exploring the oscillation artifacts mentioned above, as well as the several remedies described.

We note that in all of the computational examples provided in this section we have not considered

variations in the region of overlap between the signals (images) being registered. In our computations

we have avoided artifacts due to variations in the region of overlap when pure translations and rotations

are involved by ensuring the signals being used are equal to zero near the borders. Thus, little or no loss

in signal energy is caused by translation or rotation of an image due to image samples falling out of the

region of integration. Naturally, many real world imaging experiments do not permit such assumptions.

For a discussion of such artifacts in the mutual information similarity measure, please refer to Studholme

et al. [19].

A. 1-D synthetic examples

The concepts discussed above are illustrated with the aid of simple computations done with synthetic

one dimensional data. Figure 4 contains results of computations involving translating a ‘broad-band’ (a

spike or signal containing a broad range of frequencies in its spectrum) signal (top left) with respect to

itself and displays the SSD objective function as a function of translation using η1(x) (top right) and

η7 (bottom right) as interpolating basis functions. In order to elucidate the frequency component of the

signal and translation filter (for translation value of 0.5 pixels) being used in this simulation, we have

plotted the magnitude of the discrete Fourier transform (DFT) in the bottom left panel of Figure 4. We

note that although the translation filter being used in this case is an infinite impulse response (IIR) filter

of fast decay, the signal contained an abundant amount of zeros near the border. Therefore, the use of the

DFT in this case can provide a good approximation of its frequency content. As shown in this figure, at

translation 0.5 pixels, interpolation with η1(x) severely attenuates the energy of the signal, introducing
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Fig. 4. Top left: signal. Bottom left: DFT of signal and interpolating basis functions η1(x) and η7 sampled at translation value

0.5. Top right: SSD between original signal and translated signal using η1(x). Note the translation (x axis) values are in pixels

(samples). Bottom right: SSD between original signal and translated signal using η7(x).

Fig. 5. Top left: signal. Bottom left: DFT of signal and interpolating basis functions η1(x) and η7 sampled at translation value

0.5. Top right: SSD between original signal and translated signal using η1(x). Bottom right: SSD between original signal and

translated signal using η7(x).

the so called oscillation artifact in the cost function. The figure also includes the term 〈t, s̃(fθ)〉`2 which

turns out to be artifact free demonstrating that, in this specific simulation, the oscillatory artifacts in the

objective function are entirely due to the fluctuations in signal energy described above.

The situation changes dramatically if a ‘narrow-band’ signal whose spectrum is composed of a few low

frequencies is used instead. As shown in the bottom right panel of Figure 5, the energy of the signal is

concentrated on low frequency components, where the responses of the translated, sampled interpolating

cardinal B-splines of low and high degree are similar. As a result the SSD curve between the signal and

its translated versions is similar whether it is computed using η1(x) or η7(x). This also explains, in part,

why it is beneficial to use multiresolution image matching schemes such as the ones described in [24].

In addition to avoiding local optima due to fine image detail in the first few iterations, these approaches

have the added benefit of also reducing or removing local optima artifacts due to low degree interpolation
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Fig. 6. Top left: signal. Bottom left: DFT of signal and constant variance basis function ζ sampled at translation value 0.5.

Top right: Constant variance basis function ζ(x) in equation 47. Bottom right: SSD between original signal and translated signal

using ζ(x).

Fig. 7. Magnetic resonance image (8 bits/pixel, 256x256 samples) of the human head used in the pure translation experiments.

of the image data.

We also reproduce the same experiment using the constant variance basis function (47). Results are

shown in Figure 6. As results show, the constant variance requirement is not sufficient for avoiding

changes in the energy of the translated signal. In fact, since the frequency spectrum of the basis function

at translation value θ = 0.5 (see bottom left panel of Figure 6) is greater than one for some frequencies,

an increase in energy of the translated signal is observed at half pixel translation values (as opposed to

a decrease when using low degree B-splines).

B. Image translation

Figure 7 displays a magnetic resonance image (MRI) of the human head. This image was translated

with respect to itself using the B-spline interpolation method described above. As in the 1D experiments

above, the image is translated with respect to itself and the value of the objective function is computed

for each (sub-pixel) translation value. In addition to straight forward B-spline interpolation, we also

compute the objective function using the Monte Carlo (MC) approach of Section IVA, implemented

using linear interpolation. Objective function plots computed using a ‘smooth’ version of the image
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(computed by convolving the image with a 5x5 uniform filter) are also included. Finally, we have also

included computations using the Dirichlet interpolating basis function (see, for example, [21]) computed

in the discrete Fourier transform (DFT) domain via multiplication (phase addition) of the DFT of the

signal with the complex exponential exp (i2πθk/N), where N is the length (size) of the signal, k is the

frequency sample, and θ is the value by which the image is being translated in the horizontal dimensional.

We denote this method of signal translation as the Fourier method in subsequent figures. As done in [8],

translation is performed in one direction (in our case horizontal) while keeping a fixed translation value

in the other direction (in our case 3 pixels in the vertical direction). This is done to accentuate any

interpolation artifacts that may be present.

As far as computational complexity, for the FFT algorithm we discussed, if N is a power of 2, the

computational complexity for producing an interpolated image is roughly Nd + 2dNd logN , where as

before d refers to the dimensionality of the image. For comparison purposes using N = 256, for example,

linear interpolation would cost approximately 1.3× 108 computations, FFT-based interpolation 5.7× 108

computations, while cubic B-spline based image interpolation would cost roughly 1.1× 109.

Results for the SSD, cross correlation, and MI objective functions are shown in Figures 8 and 9.

Note that the curves computed using fifth degree B-spline and Dirichlet kernel interpolation methods are

nearly indistinguishable. The several components of the SSD objective function computed using linear

and fifth degree B-spline interpolation are shown in Figure 8 part (b). These plots indicate that, in this

computational example, oscillations in the interpolated signal energy are entirely responsible for the local

optima encountered in the SSD cost function. The MI objective function was computed using the joint

histogram method (32 bins for each image).

C. Local translation

As shown in [9], interpolation artifacts of the type discussed above also occur in nonrigid registration.

We demonstrate the performance of the computational algorithms described above by deforming the

image shown in Figure 10 according to the following radial basis function model:

fθ(x, y) =

 x+ θΥ
(
x−x0
B , y−y0B

)
y

 (49)

August 25, 2008 DRAFT



20

Fig. 8. Part (a): SSD objective function with respect to translation computed using different interpolation strategies. Part (b)

different components of SSD objective functions computed using different interpolating basis functions. Fourier interpolation

was computed through complex exponential multiplication in DFT domain (see text for more details).

Fig. 9. Part (a): CC objective function computed using several interpolation strategies. Part (b): MI objective function computed

using different interpolation strategies. Fourier interpolation was computed through complex exponential multiplication in DFT

domain (see text for more details).

Fig. 10. Image (1024x768) used in local translation experiments.
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Fig. 11. SSD objective function with respect to local translation. Part (a) shows the SSD similarity measure as a function of

local translation for linear, fifth degree B-spline, sinc, and low-pass with linear interpolation methods. Part (b) shows the results

using the Monte Carlo integration strategy described earlier.

with x0, y0 representing the center of the compactly supported radial basis function

Υ(x, y) = [µ(1− r)]4 (4r + 1); r =
√
x2 + y2. (50)

and µ(x) the unit step function. Because Υ(0, 0) = 1, when θ = 1, s̃(fθ(m,n)) represents a local

translation of the pixel coordinate x0, y0 by 1 pixel to the left. Neighboring pixels are translated according

to equation (49). For large B and small θ, pixels in the immediate vicinity of x0, y0 are translated

approximately uniformly by θ. Thus B-spline interpolation will modify the energy of the signal, locally,

as described earlier.

We repeat the experiments of the earlier section to show that low degree interpolation will cause the

introduction of local optima in the SSD objective function (results with other objective functions are

omitted for brevity). Other interpolation strategies (high degree, sinc, stochastic sampling, and blurring

the data prior to computations) do not produce objective functions with multiple local optima. Results

for the sinc interpolation kernel were computed using the standard sinc kernel sin(πx)/(πx), truncated

at x = ±30. Results are shown in Figure 11 (boundary conditions were not an issue since we omitted

from the computations pixels along the borders of the image). Note that the curves computed using

truncated sinc and fifth degree B-spline interpolation are nearly identical. As with the uniform translation

experiments, local translation was computed by substituting y in (49) with y+ 3Υ
(
x−x0
B , y−y0B

)
so as to

accentuate oscillation artifacts. B was set to 768/2.
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Fig. 12. SSD (a) and MI (b) objective functions with respect to rotation computed using several interpolation algorithms. See

text for details.

D. Image rotation

As discussed in previous studies, artifactual local optima also occur when rotating an image. Strictly

speaking, the mechanism through which local optima artifacts in rotation experiments are generated

differs from the explanation given earlier which was based on pure translations. As a consequence, the

inequalities (33) and (37) are not useful for determining the degree n of the B-spline interpolant necessary

for rotating a given image. However, we note that rotations can be approximated through sequential pure

translations in each direction, as described in Unser et al [28], and because the discrete energy of the

image ‖s̃(fθ)‖2`2 varies with respect to this translation, oscillations caused by pure translations can be

used to understand, intuitively, the cause of local optima artifacts in rotation experiments. Clearly, the

effect of the interpolation method on the discrete image energy will be most prominent for rotation

values which yield a close to regular sampling grid (0, 90, 180, and 270 degrees), as these, in a broad

sense, contain the least amount of interpolation of the data. As the rotation angle deviates continuously

from these rotation values, the discrete energy of the rotated signal will decrease due to the interpolation

performed. For rotation angles that do not yield a regular sampling grid, changes in angle rotation do

not affect the discrete energy of the interpolated image as much. Computational studies of rotation of the

MRI image of the human head shown earlier reveal that the behavior of the cost functions in rotation

experiments computed with the strategies presented earlier is the same as in the translation case.
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VI. DISCUSSION AND CONCLUSIONS

We have discussed oscillation artifacts caused by interpolation algorithms on three different objective

functions often used in image registration problems: sum of squared differences, cross correlation, and

mutual information. Previous works that have considered interpolation artifacts on mutual information-

based objective functions (see [14], [6], [7] for examples) fail to note that the interpolation artifacts are

general and affect most intensity-based image registration problems. We have shown that interpolation

artifacts also occur in SSD and cross-correlation objective functions. To our knowledge, this is the first

time, other than our preliminary work [9], [10] that interpolation artifacts were discussed in a general

sense (for several similarity measures simultaneously), and that a precise explanation for them in terms

of the energy of the interpolated signal was given. We note that though our analysis is based on B-spline

interpolation methods, interpolation artifacts are not exclusive to this family of basis functions. In our

experience, such artifacts also occur with other interpolation methods (e.g. Hermite). Our choice of B-

splines has to do with the fact that this family includes many popular basis functions (linear, cubic, and

in the limit, sinc) and provide a standard framework for analyzing the effects on the energy of the signals

being interpolated.

We have explained the source of the artifacts in terms of oscillations in the energy of interpolated,

translated, and sampled sequences in `2. We have shown that ‖s(fθ)‖`2 oscillations can be mitigated using

three different approaches: blurring (low passing) the data prior to computations, higher degree and sinc

interpolation, as well as stochastic sampling. Naturally, combinations of these approaches may also be

used. We note that sinc (truncated sinc and Dirichlet kernel-based) interpolation and fifth degree B-spline

interpolation yielded nearly indistinguishable registration objective functions. Stochastic sampling may be

used as a computationally inexpensive alternative to linear interpolation which can avoid the shortcomings

of linear interpolation discussed above. Finally, we note that in a typical registration problem image

rotation is optimized in conjunction with translation. Therefore, for rotation angles that are different from

zero, changes in translation values may not cause any significant oscillations in the objective function

since sampling grids at rotation values different from 0, 90, 180, and 270 will not be regular in the sense

that the point-wise distances between each resampling grid point to its nearest point in the original image

grid will be approximately random. Finally, also note that in the experiments with real image data shown

above, the cost function was computed by translating one of the images in the horizontal direction, while

displacing the image in the vertical direction so as to augment any oscillations that may be present. The

plot of the functions near the actual global optima, for the images used in this study, are smooth and
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oscillation artifacts (in the overall objective function) are much reduced in comparison to results shown

here.

The results and conclusions presented here are in good agreement with other experimental results in

the image processing literature. Pluim et al. [6] note that oscillation artifacts in the mutual information

object function increase with increased level of white noise. White noise, as well known, has a flat

frequency spectrum. Thus, an image with significant amounts of noise contains more energy in higher

frequency bands than an image with less noise. Low degree interpolation will then modify the energy

of the interpolated image more significantly. The authors in [6] also show that by performing a slight

resampling of the image can decrease the magnitude of oscillation artifacts. Such resampling operation

has two effects on the data. Firstly, it decreases the frequency content of the data, which, as discussed

earlier, will tend to diminish the oscillation artifacts. Secondly, the resampling operation as described

in [6] has the effect of introducing an irregular sampling of the original data, which may implement

the randomization effect described earlier. In addition, based on experimental arguments, Ashburner and

Friston [5] describe a method for decreasing the oscillation artifacts on the SSD objective function by

first blurring the input data. Unser et al. [8], [29] as well as Gan et al. [30] show, using computational

examples, that stochastic sampling can help in reducing oscillation in the MI similarity measure artifacts,

though a precise explanation for the source of artifacts is not included.

Tsao [7] describes a method for computing the mutual information using a ‘jittered’ sampling (akin

to the stochastic sampling method described earlier) of the image. Computational examples are included

in that work to show that such method can help decrease oscillation artifacts in the mutual information

similarity measure. However, Tsao’s main conclusion that higher degree interpolation does not lead to

an overall decrease in local optima artifacts in the MI similarity measure is not in agreement with

our theoretical and computational results. Although slight improvements of cubic B-splines over linear

interpolation for MI computations using a certain number of histogram bins are seen in that work, the

improvement did not persist as for higher resolution histograms. In our own experience, the improvements

of high degree interpolation over low degree interpolation persist over a reasonable range of histogram

sizes (resolutions) with the exception of MI computations using very high resolution histograms, on the

order of the same bit resolution as the input images. High degree interpolation methods may introduce

many intensity values not originally present in the interpolated image. High resolution histograms will be

more sensitive to such changes in image content and have other effects on the overall objective function

that our theory is not able to predict.

We also note that several researchers have shown that it is possible to construct estimates of joint
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histograms for computing the mutual information between two images via partial volume interpolation

(see [14], [8], [31] for examples). These, to some extent, can be used to diminish the number of local

optima in mutual information-based registration. It is not clear how the methodology we developed in this

paper relates to artifacts observed using partial volume interpolation other than the specific case when

zero degree B-spline interpolation is used for pure translations. In this case both methods are equal (with

the possible exception of edge artifacts) and will show the same ’staircase’ artifacts described in [7].

We conclude with a note of caution clarifying that our main contribution in this work is to show that

interpolation-based translation can cause oscillations in the energy of the similarity function which, if

left unbalanced by other terms, can contribute to oscillatory (local optima) behavior in several similarity

measures described above. Thus our investigation of interpolation artifacts for intensity-based image

registration is not exhaustive since it does not investigate many other possible effects that could affect

the other terms (e.g. R(θ), 〈t, s̃(fθ)〉`2 , Ψconstraint(θ)) typically present in such problems. Some of these

effects could be due to changes in the region (amount) of overlap between the images, nonlinearities

introduced due to histogram binning and number of bins used for computing the MI, bias in higher order

moments of the intensity distribution of the interpolated values, to name a few.

APPENDIX A

Here we show that the mutual information similarity measure can be expanded as in (22). We use

the Gram-Charlier A series expansion of the multivariate probability density function pSθ,T (µ, υ). Let V

represent the two dimensional random variable V =
{
T, Sθ

}
. Then

pV (v) = φV (v) {1 + ϕV (v)} , (51)

where

ϕV (v) =
1
3!

∑
i,j,k

λi,j,khi,j,k(v) +
1
4!

∑
i,j,k,l

λi,j,k,lhi,j,k,l(v) + · · · (52)

with hi,j,k the ijkth Hermite tensor, λi,k,k are joint cumulants [32], and φV (v) is the bivariate Gaussian

density with correlation coefficient ρ(θ), and standard deviations σSθ , σT . These quantities may be

estimated from the image samples t(i) and s(fθ(i)) as in equations (18),(19),(20). The sums above are
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computed for all combination of indexes. The differential entropy of V is then

H(V ) = −
∫ ∫

pV (v) log (pV (v)) dv

= −
∫ ∫

φV (v) log (φV (v)) dv −∫ ∫
φV (v) log (1 + ϕV (v)) dv −∫ ∫
φV (v)ϕV (v) log (φV (v)(1 + ϕV (v))) dv.

(53)

Similar expansions can be written for the univariate probability density functions of random variables Sθ

and T :

pSθ(v) = φSθ(v)(1 + ϕSθ(v)), and (54)

pT (v) = φT (v)(1 + ϕT (v)), (55)

with φSθ(v) and φT (v) representing Gaussian pdfs with variances σ2
Sθ and σ2

T , respectively, and ϕSθ(v)

and ϕT (v) derived from the univariate Gram-Charlier expansions of the pdfs of Sθ and T . The differential

entropies are:

H(Sθ) = −
∫
φSθ(v) log (φSθ(v)) dv −∫

φSθ(v) log (1 + ϕSθ(v)) dv −∫
φSθ(v)ϕSθ(v) log (φSθ(v)(1 + ϕSθ(v))) dv

(56)

and

H(T ) = −
∫
φT (v) log (φT (v)) dv −∫

φT (v) log (1 + ϕT (v)) dv −∫
φT (v)ϕT (v) log (φT (v)(1 + ϕT (v))) dv.

(57)

Substituting equations (53), (56) and (57) into (16) we arrive to (22) with
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IG(θ) = −
∫
φSθ(v) log (φSθ(v)) dv −∫

φT (v) log (φT (v)) dv +∫ ∫
pV (v) log (pV (v)) dv (58)

and

R(θ) =
∫ ∫

φV (v) log (1 + ϕV (v)) dv +∫ ∫
φV (v)ϕV (v) log (φV (v)(1 + ϕV (v))) dv −∫

φSθ(v) log (1 + ϕSθ(v)) dv −∫
φSθ(v)ϕSθ(v) log (φSθ(v)(1 + ϕSθ(v))) dv −∫
φT (v) log (1 + ϕT (v)) dv −∫
φT (v)ϕT (v) log (φT (v)(1 + ϕT (v))) dv. (59)
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