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Abstract

Recurrence plots have been widely used for a variety of purposes such as analyzing dy-

namical systems, denoising, as well as detection of deterministic signals embedded in noise.

Though it has been postulated previously that recurrence plots contain time correlation in-

formation here we make the relationship between unthresholded recurrence plots and the

covariance of a random process more precise. Computations using examples from harmonic

processes, autoregressive models, and outputs from nonlinear systems are shown to illustrate

this relationship. Finally, the use of recurrence plots for detection of deterministic signals

in the presence of noise is investigated and compared to traditional signal detection meth-

ods based on the likelihood ratio test. Results using simulated data show that detectors

based on certain statistics derived from recurrence plots are sub-optimal when compared to

well-known detectors based on the likelihood ratio.
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1 Introduction

Since its introduction by Eckmann and Ruelle [1] the recurrence plot has emerged as a

useful tool in the analysis of nonlinear, non-stationary time series. As the name suggests,

a recurrence plot provides a graphical picture of the times at which a process will return

(recur) to a given state. Given a real-valued time function x(t) a recurrence plot is built by

first ’embedding’ the function in a multi-dimensional space by constructing a vector

u(t) = {x(t), x(t+ τ), · · · , x(t+ (d− 1)τ)}T , (1)

where d and τ are the embedding dimension and delay, respectively [1]. The recurrence

plot (RP) is then usually defined as a matrix R(t, s) = H(ε − ‖u(t) − u(s)‖), where H(x)

is the Heaviside function, ε is a chosen threshold, and ‖a‖2 = aTa is the standard 2 norm

for vectors. The definition described above implies that the recurrence plot is a binary plot,

where a dot is placed in the coordinate t, s for which u(t) and u(s) are relatively close to

each other.

The original motivation for such a plot was to gain insight into the time scales involved in

dynamical processes and to provide a technique for detecting nonstationarities (e.g. param-

eter drift). Subsequently, recurrence plots and the various metrics derived from them have

been used for a variety of purposes such as the study of nonlinear chaotic systems [2, 3, 4],

data denoising [5], as well as analysis of sound signals [6]. The emergence of Recurrence

Quantification Analysis (RQA)[7] has furthered the use of recurrence plots and has resulted

in a number of recurrence-based studies in the literature. RQA consists of computing various

statistics that reflect the composition of recurrence plots by quantifying both the number

of recurrences and the length of time a process will remain correlated (remain in the same

state) with itself. Studies making use of RQA include the analysis of heart-rate-variability

data [8], analysis of protein sequences [9], as well as detection of deterministic signals buried

in noise [10, 11, 12] among many others. Other works relating RQA metrics to estimates

of invariant measures include [13, 14]. In this work, however, we are not interested in the

problem of estimating such measures, but rather in the problem of detecting a signal buried
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in noise. For this different application a different type of analysis is required. Rather than

treat the signals as the output of a deterministic, dynamical system we explore the statistical

properties of the recurrence plot.

Though it has often been postulated that recurrence plots contain some kind of ’time

correlation information’ (see [1] for example) here we make this relationship more precise.

Many researchers recognize that uncertainty due to noise and other causes has some effect

on the computation of recurrence plots. However, not a great deal of information about the

stochastic properties of recurrence plots is available. Thiel et al. [15] study the influence

of observational noise on recurrence plots and the effect it has on quantities derived from

them. Casdagli [2] proposed so called meta recurrence plots (recurrence plots modified by

local averaging of the thresholded recurrence plot) to reconstruct the driving source of a

dynamical system.

Here we describe the stochastic properties of recurrence plots by drawing analogies from

the second order theory of random processes (which includes observational white noise)

with the ultimate goal of characterizing the performance of RP-based statistics for standard

deterministic signal detection problems. We show that, in many practical circumstances

described in detail below, the expected value of the entries of the unthresholded, squared RP

(USRP) can be expressed in terms of the variance and covariance of an underlying random

process. In addition, we show that in two specific cases (instances of harmonic processes with

specific embedding, or instances of stationary, zero mean, processes with large embedding

dimension) the entries of USRPs can be written as functions of the estimates of the covariance

matrix for the random process.

More specific information about the settings under which the equivalence between covari-

ance and unthresholded recurrence plots is given below. We study unthresholded recurrence

plots of several kinds of random processes, stationary and non-stationary, and arising from

linear as well as nonlinear systems with the end goal of characterizing the performance of

signal detection methods based on recurrence plots. Finally, we study the application of

techniques derived from recurrence plot analysis to the problem of detection of determinis-

tic signals buried in noise in an effort to characterize the performance of recurrence-based
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detectors proposed recently elsewhere [10, 11, 12]. We show that the performance of many

recurrence-based detectors compares unfavorably with more traditional approaches.

2 Recurrence plots of stochastic processes

There are several good reasons for investigating the stochastic properties of recurrence plots

due to the fact that many real-world signals (say a voltage, displacement, or price index) are

at least partially described by random phenomena, with noise being the primary example.

First consider the autoregressive model of order 1 (AR1) (see subsection 2.1 below), a widely

used model. Recurrence plots of two instances of the same random process are displayed in

Figure 1. By looking at this figure it is easy to understand why so many researchers have

become enamored with the technique. It produces interesting graphical descriptions of a data

series (made even more interesting by the fact that recurrence plots are usually constructed

to be symmetric). However, recurrence plots are highly sensitive to several features such as

embedding dimension d, the time delay used in the embedding τ , and choice of threshold ε.

A small change in one of these parameters can change the appearance of recurrence plots

significantly. In addition to the strong dependence on parameters d, τ , and ε, recurrence plots

tend to be highly sensitive to randomness in the signals. For example, the recurrence plots

shown in Figure 1 are very different from one another, even though the data used in both

came from the same process. Another good reason to investigate the stochastic properties

of recurrence plots is related to the application of detection of deterministic signals in noise,

the main objective of this paper. In this application one is usually interested in constructing

detectors (receivers) that are at the same time powerful and significant (these concepts are

explained in more detail below) in a statistical sense. Therefore expectations (in the sense

of ensemble averages) of detection statistics become necessary.

For the reasons delineated above (and also because they are theoretically easier to analyze)

in this article we will study, mostly, USRPs. That is, instead of analyzing R(t, s) = H(ε −

‖u(t)− u(s)‖) we analyze

D(t, s) = ‖u(t)− u(s)‖2. (2)
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We note that unthresholded recurrence plots have been used previously in the literature [3].

We begin by letting a real-valued time function x(t) represent a continuous random

process. Note that we use the same notation to denote a random process and a realization

of the random process. More precisely, we consider each x(t) to be a random variable with

mean µ(t) = E{x(t)}, where the expectation E{g(ξ)} =
∫
g(ξ)pr[ξ]dξ, with pr[ξ] representing

the probability density function of random variable ξ. The variance of x(t) is σ2(t) =

E{(x(t)− µ(t))2} while the covariance between x(t) and x(s) is given by:

C(t, s) = E{(x(t)− µ(t))(x(s)− µ(s))} = E{x(t)x(s)} − µ(t)µ(s). (3)

The expectation value of the USRP can be written as:

E{‖u(t)− u(s)‖2} = E{‖u(t)‖2} − 2E{uT (t)u(s)}+ E{‖u(s)‖2}. (4)

For the case d = 1, and if µ(t) = 0 for all t (i.e., zero mean random process), then it is easy

to see that:
1
d

E{D(t, s)} = σ2(t)− 2C(t, s) + σ2(s). (5)

Clearly, the same holds for zero mean, second order stationary random processes (stationary

in mean and covariance):

1
d

E{D(t, s)} = 2(σ2(t)− C(t, s)), (6)

regardless of the choice of d and τ . Finally, equation (5) also holds, approximately, for

random processes that are zero mean and locally stationary, so long as d and τ are chosen

such that each vector u(t) contains data from a finite region whose covariance matrix is

approximately stationary.

The analysis above links unthresholded recurrence plots D(t, s) to variance and covariance

of random processes. That is, if we had access to multiple, statistically independent, sample

functions x(t), the ensemble average of the USRP, under the conditions described above,

would be a simple function of the ensemble variance and covariance of the data series. We
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should point out that typically RPs are used to analyze single realizations of a signal (as

opposed to an ensemble). In this case, RP analysis does not necessarily equate to second

order statistics and can in fact be used to explore higher-order correlations among time series

data.

2.1 Linear Autoregressive Processes

Consider a first order linear autoregressive discrete random process (AR1) given by

x(n) = ax(n− 1) + e(n), (7)

where n = 1, 2, · · · and e(n) are zero mean, uncorrelated, normally distributed random

variables with variance σ2
e . If |a| < 1, then the random process above is asymptotically

stationary to second order and its covariance is given, approximately, by [16]:

C(i, j) = σ2
e

a|i−j|

(1− a2)
. (8)

Naturally, the variance of this random process is given by, approximately, σ2
x = σ2

e/(1− a2).

Figure 2 (top) displays a sample function of the random process above with x0 = 0, a = 0.8,

and σ2
e = 1. Note that, unless noted otherwise, all axis in the figures contain time information.

The time index in this figure was chosen so that t = n/103 and n = 1, · · · , 210. The

expectation of the unthresholded recurrence plot E{D(i, j)} was computed by generating an

ensemble of 1000 replicates of the random process above and then computing its average.

This plot is displayed on the bottom left panel of figure 2. For these computations we set

d = 3 and τ = 2 (2/103 in real time coordinates). Note that in regions where |i − j| is

large (regions which correspond to the regions far away from the diagonal in the recurrence

plot), according to equation (8) one must have that σ2(i) − 2C(i, j) + σ2(j) = 5.56, which,

by looking at the bottom left panel plot, agrees fairly well with the results obtained. The

absolute error between E{D(i, j)}/d and σ2(i) − 2C(i, j) + σ2(j) (estimated from the same

ensemble) is shown on the bottom right panel. The mean value of E{D(i, j)}/d (sum of

6



E{D(i, j)}/d over all indices i, j divided by N2) is 5.49 while the mean value of the error

plot is 0.2. It is possible to reduce the magnitude of the error by increasing the number of

replicates in the ensemble.

Note that, because the random process above is asymptotically stationary and ergodic,

one may substitute ensemble averages with time averages. Therefore it is possible to compare

D(i, j)/d (without taking expectations) and σ2(i)−2C(i, j)+σ2(j) directly simply by choos-

ing a large embedding dimension d. Since D(i, j)/d = ‖u(i)‖2/d− 2uT (i)u(j)/d+ ‖u(j)‖2/d

and (noting the mean of the random process is zero)

lim
d→∞

‖u(i)‖2/d = lim
d→∞

1
d

d∑
k=1

|uk(i)|2 ∼ σ2(i) = σ2
e/(1− a2), (9)

lim
d→∞

−2u(i)Tu(j)/d = lim
d→∞

−2
1
d

d∑
k=1

uk(i)uk(j) ∼ −2C(i, j) = −2σ2
e

a|i−j|

(1− a2)
. (10)

In Figure 3 we repeat the experiment using d = 400, τ = 1. As before, the error between

D(i, j)/d and σ2(i)− 2C(i, j) + σ2(j) can be reduced by increasing d. Here the mean value

of the recurrence plot was 4.6 while the mean value of the error 0.6.

The autoregressive process above can be modified so that it is no longer stationary by

having a vary with time:

x(n) = a(n)x(n− 1) + e(n). (11)

If the coefficients a(n) do not vary rapidly, the covariance matrix for this random process can

be seen as locally stationary. Using a sample function a(n) that varies smoothly between 0

and 0.9 we have computed the expected value of D(i, j) and σ2(i)−2C(i, j)+σ2(j) estimated

from an ensemble of 1000 realizations. Results are shown in figure 4. σ2(i)− 2C(i, j) +σ2(j)

is shown on the left and E{D(i, j)} on the middle panel. The error is shown on the right

panel. Care was taken to choose d = 3 and τ = 2 so that each vector u(j) contained data

from a small region so that the local stationarity assumption is approximately satisfied.
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2.2 Harmonic Processes

Harmonic models have traditionally been used to model cyclic phenomena which can be well

approximated as sums of sines and cosines. They have been extensively used, for example,

in modeling electromagnetic waves used in radar and communications applications. One

harmonic random process often studied is

x(t) =
K∑
k=1

Ak cos(wkt+ φk) (12)

where Ak, wk are constants and φk are independent random variables uniformly distributed

in the interval (−π, π). This is a stationary random process. E{x(t)} = 0 for all t while the

covariance of this random process is

C(t, s) =
K∑
k=1

1
2
A2
k cos(wk|t− s|). (13)

Hence,

σ2 =
K∑
k=1

1
2
A2
k. (14)

Clearly equation (6) holds as before regardless of the choice of d and τ because the process is

stationary. The simulation experiment described above was repeated this time using K = 3,

A1 = 2, A2 = 3, A3 = 0.3, ∆t = 1/103, d = 3, τ = 2, w1 = 20, w2 = 36, w3 = 48,

t = n∆t, n = 1 · · · 210, and 1000 replicates as before. Each φk was chosen to be uniformly

distributed between −π and π. Results are shown in figure 5. A sample signal is shown on

top, σ2(t) − 2C(t, s) + σ2(s) is shown on the bottom left panel, and the expected value of

the unthresholded RP is shown on the bottom center panel. The error is shown on the right

panel. The average error was 0.27 while the average value of E{D(i, j)}/d was 13.1. Note

that, since in this case the process is stationary, the choices for the parameters described

above is arbitrary. That is, the equivalence holds in general settings.

As before, it is not necessary to take expectations to relate recurrence plots and covari-

ance. For example, consider the process given in equation (12) with wk = kβ. One may check

by substitution (see appendix A) that if d > 2K and τ = 2π
βd then unthresholded recurrence
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plots equate to a simple function of the covariance structure for the random process, without

taking expectations:

1
d
D(t, s) = σ2(t)− 2C(t, s) + σ2(s). (15)

2.3 Duffing System

In the literature recurrence plots are often used to study the correlation structure in nonlinear

(often chaotic) signals. For this reason we use recurrence plots to analyze the response of a

chaotic Duffing system
d2x

dt2
− cdx

dt
+ x(1 + x2) = f(t) (16)

where f(t) is the simple harmonic random process:

f(t) = A cos(wt+ φ), (17)

with φ being a random variable uniformly distributed between −π and π. The Duffing system

was solved numerically using c = 0.25, A = 0.4, and w = 1 in the time interval between 0 and

100, taking only samples after time 10 to allow for transients to fade away. The time samples

were evenly distributed between 10 and 100 while the data length again was 1024. Again we

wish to compare the quantities E{D(t, s)} defined in equation (2) and σ2(t)−2C(t, s)+σ2(s)

by generating an ensemble of 1000 realizations. Results are shown in figure 6. The top part

contains a sample signal x(t), while the bottom left panel displays E{D(t, s)}. The bottom

right panel contains σ2(t) − 2C(t, s) + σ2(s) as estimated from the ensemble. The average

error was 0.1 while the average value of E{D(i, j)}/d was 1.5.

In this simulation the embedding dimension was 3 while the time delay was 1. As shown

in this figure, both quantities contain very similar information. More precisely, unlike the

AR1 random process for example, the output of a Duffing system when excited by a harmonic

process contains time correlations which are not simple decaying functions, but contain fluc-

tuations. However, as shown in this experiment, the information content of the covariance of

the random process and the expectation value of the unthresholded recurrence plot is very
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similar.

3 Detection of Deterministic Signals in Noise

Detecting whether an incoming signal contains information from a deterministic physical

source (as opposed to random thermal noise, for example) is an important task with numerous

applications. Recurrence plots have been used for such a task in Zbilut and others [10, 11, 12].

By drawing from the theory developed above we now compare a few detectors based on

recurrence plots with more traditional detectors based on likelihood ratio tests. We note

that in our study we do not perform an exhaustive comparison between detectors based on

likelihood ratios and recurrence-based time series analysis methods. Many works describing

advanced methods for recurrence-based time series analysis exist (see [13] for an example).

In this section our goal is to characterize the performance of recurrence-based methods for

detecting deterministic signals already proposed elsewhere, such as in the work of Zbilut

and colleagues [10, 11, 12], in comparison with more traditional methods developed in the

electrical engineering literature.

In its simplest form, the detection problem can be cast as follows. Given a data series

x = {x(1), · · · , x(N)}T (note that without loss of generality we take ∆t to be 1) we ask

which hypothesis is most likely to have occurred:

H0 : signal absent [x = e] (18)

H1 : signal present [x = s + e]

where e = {e(1), · · · , e(N)}T represents a noise vector while s = {s(1), · · · , s(N)}T repre-

sents a deterministic signal from a physical source. If enough is known about the deterministic

and stochastic parts of the data series x under both hypotheses a likelihood ratio test can

be performed

λ(x) =
p1(x)
p0(x)

> η (19)

where p1(x) is the likelihood function for the data series under hypothesis H1 and p0(x) is the

10



likelihood function for the data series under H0. From (19) is is possible to derive statistics

λ(x) which can be chosen to be optimal in several senses. The threshold η can be chosen

according to a variety of criteria. One may choose to minimize the probability of making

an error, or, as in a Neyman-Pearson test for example, a threshold can be chosen to satisfy

some probability of false alarm. The probability of false alarm Pfa (in statistics known as

the significance of a test) is defined as the probability of deciding that a signal is present

when in fact it is not. It can be calculated directly from the test statistic λ(x):

Pfa =
∫ ∞
η

p0(λ(x))dλ(x) (20)

where p0(λ(x)) is the probability density function, under H0, of the statistic λ(x). In essence,

it computes the probability that, given hypothesis zero is true, the statistic λ would be greater

than the threshold η. If η represents the decision boundary, this would be an error (false

alarm), and hence the terminology false alarm.

Similarly, the probability of detection given a deterministic signal is present Pd (in statis-

tics known as the power of a test) is defined as the area under p1(λ(x)) to the right of the

decision boundary:

Pd =
∫ ∞
η

p1(λ(x))dλ(x) (21)

where p1(λ(x)) is the probability density function of the statistic λ(x) under H1. This defines

the probability that, given that hypothesis one is true, the detection statistic would correctly

determine that a signal is present.

A curve plotting Pfa versus Pd, known as a Receiver Operating Characteristic (ROC)

curve, is a good measure of the performance of a particular receiver. The ROC curve is,

in fact, one standard platform for comparing different detectors. For a fixed Pfa, a higher

probability of detection Pd represents a better detector. Thus an optimal detector is the

one for which, given some probability of false alarm Pfa, the probability of detection Pd

is maximized. The problem of optimal signal detection has been extensively developed in

the engineering literature. For comprehensive references, including plots of p1(λ(x)) and

p0(λ(x)) for different experimental setups, see [17, 18].
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We will compare detectors based on unthresholded recurrence plots with detectors based

on the likelihood ratio framework described above under two general circumstances: when

the signal s is known and when it is not known. We will use several types of signals derived

from harmonic processes (simple sinusoids and linear chirps) as well as signals arising from

the Duffing nonlinear system.

When the deterministic signal s one is trying to detect is known, and assuming that e is

a sequence of identically and independently distributed (iid) normal random variables (white

noise), the likelihood ratio test reduces to the well-known correlation receiver (see [17] for a

derivation)
1
σ2

xT s > ln(η) +
1

2σ2
‖s‖2. (22)

where σ2 is the variance of the noise. In cases where not enough information is available to

characterize the probability density function of an incoming deterministic signal alternative

approaches must be used. For example, for detecting a sampled sinusoid, n = 1, · · · , N

with unknown frequency and phase an average likelihood ratio test (assuming a uniform

distribution of frequencies and phases) is often used (see [17], for example)

N∑
m=1

q2m > V (23)

where V (to be chosen given some optimality criterion) is a scalar threshold and

qm =
1
N

N−1∑
n=0

x(n) exp
(
ı2πnm
N

)
. (24)

If x(n) is zero mean, testing for
∑N

m=1 q
2
m is equivalent to testing for the variance (power) of

the signal.

3.1 Detection of unknown signals

Let us start by looking at the problem of detecting a cosine signal sampled at n = 1, · · · , N

with unknown frequency and phase. Zbilut and colleagues suggest using quantities computed
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based on thresholded recurrence plots such as the percent recurrence, defined as:

%REC =
1
N2

N∑
i,j=1

H
(
ε−

√
D(i, j)

)
, (25)

where H(·) is the Heaviside function, as well as the percent determinism, defined as:

%DET =

∑lmax
l=lmin

l · P (l)∑lmax
l=1 l · P (l)

(26)

where P (l) is the distribution (usually computed via histogram binning) of diagonal lines of

length l in a thresholded recurrence plot. lmin was set to 2 and lmax was set to the maximum

possible, given the finite size of the data series, and consequently the recurrence plot. In

addition to these, we have also tested the average line length (ALL) in the recurrence plot

as a statistic for detection. Finally, note that these detectors can be built based on diagonal

lines of the recurrence plot [10, 12] or vertical lines [8].

In Figure 7 we plot ROC curves computed based on the statistics described above, as

well as the ROC curve based on the average value of the unthresholded recurrence plot. In

this simulation a simple cosine random process (12) was used with K = 1, w1 = 20, ∆t = 1,

d = 4, τ = 12, and ε = 1.5. Two experiments are shown. In the first (top part of the figure)

the %DET and ALL detectors were based on diagonal lines, while on the bottom figure they

were based on vertical lines. We note that results obtained using this specific setting for

the parameters are representative of a larger series of experiments where we have varied the

parameters d, τ and ε. We omit the plot of additional results for brevity. For all experiments

tried the detector based on the average, unthresholded, recurrence plot outperforms the

detectors based on %REC, %DET and ALL. Therefore, from here on we focus exclusively

on the average recurrence as a statistic to be used in detecting signals.

A few notes about the selection of parameters d, τ , and ε are appropriate. For the

purpose of attractor reconstruction, and estimation of physical quantities related to it, general

guidelines for the settings of the parameters d, τ are are provided by Takens [19]. However,

for some applications such as the estimation of dynamical invariants embedding appears

to play a diminished role [20, 21]. The role of a ”proper” embedding with regard to the

13



signal detection problem has not yet been explored. Stark et. al. [22] suggest embedding

stochastic systems is still appropriate in some cases but there exists few guidelines in this

case. In the absence of guidelines for choosing these parameters for the problem of detecting

signals buried in noise we tested several settings experimentally. As reported above, in the

cases we tried, we did not find settings so that detectors based on binary recurrence plots

would outperform the simple average, unthresholded, squared recurrence. In addition, the

performance of the average, unthresholded, squared recurrence detector remains constant for

the choices of embedding we tested.

The detector based on the average (unthresholded) recurrence plot is defined as:

λ(x) =
1
N2

N∑
i=1

N∑
j=1

D(i, j). (27)

Taking the expectation of the expression above and using the result in equation (5) we have:

E {λ(x)} =
1
N2

N∑
i=1

N∑
j=1

E {D(i, j)} =
d

N2

N∑
i=1

N∑
j=1

{
σ2(i)− 2C(i, j) + σ2(j)

}
. (28)

The sufficient conditions for the equation above to hold were explained earlier. To summarize,

the equation above holds for any kind of zero mean random process if d = 1. For stationary

processes, zero mean, (such as the harmonic random process), the result holds for any choice

of d and τ . For non-stationary, zero mean, processes, the result above holds, approximately,

if dτ is smaller than the length of time over which the covariance C(i, j) changes appreciably.

Equation (28) above links the unthresholded average recurrence detector to the power

detector described earlier. Therefore we should expect that both detectors should perform

similarly when it comes to detecting unknown signals. In fact this is exactly the result

obtained for the three signals investigated here (cosine, linear chirp, and Duffing). The

results are shown in Figure 8. The cosine wave was computed using the random process

definition in (12). The parameters used were w = 20, K = 1, while d = 4, τ = 12, and

ε = 1.5. The chirp wave was computed such that the frequency varied linearly between 5

Hz at time 0 and 40 Hz at time 1. The phase was randomly selected between (−π, π). In
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this experiment the embedding dimension was set to 4, and the delay to 6, while ε = 1.5.

Finally, the Duffing system was solved as explained earlier. Embedding dimension was set to

4, τ = 15, and ε = 3.5. In all cases the signal to noise ratio (variance of signal over variance

of noise) was 0.1. The results in this figure demonstrate, in these specific cases, that there

is no advantage, from a statistical point of view, to using detectors based on %REC, %DET

and ALL over the simplest of detectors such as the power detector, whether it is implemented

in the time or frequency domain.

3.2 Detection of known signals

When the form of the deterministic signal s one is trying to detect is known Zbilut and

colleagues [10, 11, 12] have proposed using cross-recurrence plot (CRP) as a tool for detecting

signals. A CRP follows basically the same construction as presented earlier with the difference

that now:

Ri,j = H(ε− ‖u(i)− v(j)‖) (29)

where u(i) is the embedded signal x while v(j) is the embedded probe (the known signal)

y. As before we compare the detector based on the statistic

λ(x) =
1
N2

N∑
i=1

N∑
j=1

‖u(i)− v(j)‖2 (30)

to the correlation detector given in equation (22). The comparison is given in Figure 9. The

signal here was the same cosine wave described earlier. The phase term, however, was set to

zero so that the signal was always in phase with the probe, as done in [11]. Clearly, the CRP

receiver is outperformed by the traditional correlation receiver by a significant amount. In

fact this is to be expected since the correlation receiver, in this experiment, can be shown to

be optimum in the sense that it maximizes the probability of detection for a given probability

of false alarm [17].
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4 Summary and Conclusions

We have used well-known tools from the second order theory of random processes to inves-

tigate the stochastic properties of recurrence plots. We have shown that for some types of

random processes, the expected value of the entries of USRPs can be expressed in terms of

the variance and covariance of the random process. This relationship is expressed in equation

(5), which is appropriate when any the following holds:

• if the embedding dimension is set to 1 (no embedding);

• for any embedding dimension d and delay τ so long as the random process is stationary

to second order;

• when processes are non-stationary but locally stationary, the relationship holds, ap-

proximately, if d and τ are chosen so that dτ is smaller than the period of time over

which the covariance of the random process changes appreciably.

We have also shown that the relationship (5) holds exactly for some choices of d and τ for

stationary harmonic processes, even without taking expectations (equation (15)). For that

one must choose the embedding dimension to be greater than twice the number of sinusoids

in the random process (d > 2K), and the delay must be τ = 2π/(βd).

Note that when the conditions delineated above are not met, unthresholded recurrence

plots, even in expectation, may not equate to second order analysis. In fact it is likely that

these two quantities can be significantly different. Consider the case of a linear chirp with

random phase uniformly distributed between 0 and 2π, an instance of which is shown in

Figure 10. The signal consists of a single chirp varying from 1 Hz to 100 Hz in the span

of 1 second. The signal was sampled with ∆t = 1/103. The covariance function of the

random process is shown in the bottom left of Figure 10. The expected value of the squared

unthresholded recurrence (with d = 3 and τ = 30) plot is shown in the middle of the bottom

row. The error between these two quantities is shown on the right bottom panel in the same

figure. As shown here the error between these quantities is significantly larger than the error

between the same quantities when the stationarity assumption holds (cosine example shown
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earlier). The average error shown is 0.5, while the average value of the squared, unthresholded

recurrence plot is 1.

Note also that, even though in the settings we described above, unthresholded RP statis-

tics equate to second order statistics of random process this does not mean that quantities

derived from RP in different settings (in the study of dynamical systems, for example) equate

to second order analysis. For example, the concept of correlation dimension often used to

characterize time series arising from dynamical systems (which can be computed using a

recurrence plot [23]) is not the same as the correlation (defined through ensemble expecta-

tions) between random variables x(t1) and x(t2). Naturally these quantities may be related

through the fact that they can often be computed from the same data series. However, the

concepts are different and one must be careful not to allow the similar nomenclature to cause

confusion.

We have used relationship (5) to analyze the performance of the recurrence plot as a

tool for deterministic signal detection. For detection of unknown signals (signals for which

a model is not available) the detector based on the average unthresholded recurrence plot

(which performed better than detectors based on other thresholded recurrence statistics) is

essentially equivalent to the variance (power) detector. This was confirmed by simulations

using harmonic signals (sinusoids, linear chirps) as well as outputs from the Duffing nonlinear

system. In addition, as a statistical test for detection of deterministic signals, the performance

of the CRP detector proposed by Zbilut and colleagues [11] falls significantly below that of

the traditional correlation receiver. We conclude that, while recurrence plots remain a useful

tool in certain estimation problems, their performance in classical signal detection problems

does not compare well with traditional approaches based on the likelihood ratio framework.

Appendix A

Here we show that for certain choices of embedding dimension d and delay τ , the recurrence

plot (unthresholded) of a harmonic process is exactly equivalent to the formula (15) even

without taking (ensemble) averages. Again, let the random process be defined as:
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x(t) =
K∑
k=1

Ak cos(kβt+ φk), (31)

while the embedding u(t) is defined by equation (1). Naturally, if one wishes that

‖u(t)− u(s)‖2/d = ‖u(t)‖2/d− 2uT (t)u(s)/d+ ‖u(s)‖2/d

= σ2(t)− 2C(t, s) + σ2(s), (32)

the following conditions suffice:

‖u(t)‖2/d = σ2(t) (33)

uT (t)u(s)/d = C(t, s). (34)

Using τ = 2π
βd , each component of vector u(t) is given by:

(u(t))i = x(t+ (i− 1)τ) =
K∑
k=1

Ak cos
(
kβt+ k

2π
d

(i− 1) + φk

)
.

First, we are interested in computing ‖u(t)‖2:

‖u(t)‖2 =
d∑
i=1

K∑
k=1

A2
k cos2

(
kβt+ k

2π
d

(i− 1) + φk

)
.

Using the identity:

cos(u) cos(v) =
1
2

[cos(u− v) + cos(u+ v)], (35)

one can show that

‖u(t)‖2 =
1
2

K∑
k=1

A2
k

d∑
i=1

[
1 + cos

(
2kβt+ 2φk + 2k

2π
d

(i− 1)
)]

.

Using the fact that, if d > 2k,

d∑
i=1

cos
(

2kβt+ 2φk + 2k
2π
d

(i− 1)
)

= 0
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(this result can be shown using the identity
∑L−1

m=0 e
−ıωm = sin(ωL/2)

sin(ω/2) e
−ıω(L−1)/2) and equation

(14) one arrives at the condition (33).

Now consider

uT (t)u(s) =
K∑
k=1

K∑
j=1

AkAj

d∑
i=1

cos
(
kβs+ k(i− 1)

2π
d

+ φk

)
×

cos
(
jβt+ j(i− 1)

2π
d

+ φj

)
.

Using (35) again and re-arranging

uT (t)u(s) =
K∑
k=1

K∑
j=1

1
2
AkAj

d∑
i=1

cos
(
β(kt− js) + φk − φj + (i− 1)

2π
d

(k − j)
)

+

K∑
k=1

K∑
j=1

1
2
AkAj

d∑
i=1

cos
(
β(kt+ js) + φk + φj + (i− 1)

2π
d

(k + j)
)
.

The first cosine sum of the equation above is only nonzero when k = j. If d > 2K again,

the second cosine sum is always zero. Therefore (taking advantage that the cosine function

is even)

uT (t)u(s) =
d

2

K∑
k=1

A2
k cos (kβ|t− s|) .

Dividing by d we arrive at the result (34).

To summarize, given an instance of a generic stationary harmonic random process defined

in equation (31) one can compute a recurrence plot so that it is a simple function (given in

equation (32)) of the covariance structure of the random process. To that end one must

first choose an embedding dimension so that d > 2K, and then set the embedding delay to

τ = 2π
βd . These are sufficient conditions for (32) to hold.
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Figure captions

Figure 1

Thresholded recurrence plots of two instances of the same (AR) random process. Even though

the random process parameters are the same the recurrence plots can look dramatically

different.

Figure 2

Stochastic analysis of AR1 using unthresholded recurrence plots. The top part shows a sample

signal from an AR1 random process. The bottom left panel shows the expected value of the

squared, unthresholded, recurrence plot computing from an ensemble of 1000 repetitions.

The bottom right panel shows the error between the expected value of the recurrence plot

and σ2(i)− 2C(i, j) + σ2(j) (estimated from the same ensemble). See text for a description

of the parameters used in this simulation.

Figure 3

Analysis of a single realization of the AR1 process using recurrence plots. A sample function

is shown on top while the bottom left panel shows a single unthresholded, squared, recurrence

plot. The bottom right panel shows the error between the unthresholded, squared, recurrence

plot and σ2(i)− 2C(i, j) + σ2(j).

Figure 4

Stochastic analysis of nonstationary AR1 using unthresholded recurrence plots. The panel

on the left shows σ2(i) − 2C(i, j) + σ2(j), computed from an ensemble of 1000 realizations.

E{D(i, j)}/d is shown in the middle panel and the error is shown on the right panel.
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Figure 5

Stochastic analysis of cosine harmonic process. A sample function is shown on top. σ2(i)−

2C(i, j) + σ2(j), computed from an ensemble of 1000 realizations, is shown on the bottom

left, while E{D(i, j)}/d is shown in the middle panel. The error is shown in the bottom right

panel.

Figure 6

Stochastic analysis of Duffing system. A sample function is shown on the top of the figure.

σ2(i) − 2C(i, j) + σ2(j), computed from an ensemble of 1000 realizations, is shown on the

bottom left, while E{D(i, j)}/d is shown in the middle panel. The error is shown in the

bottom right panel.

Figure 7

Detector statistics for simple cosine wave (SNR = 0.1).

Figure 8

ROC curves comparing power detector with average recurrence detector for cosine (top),

chirp (middle) and Duffing (bottom) signals.

Figure 9

ROC curves comparing CRP receiver with the well-known correlation receiver.

Figure 10

Expectation of unthresholded recurrence plot (middle of bottom row) for a linear chirp

random process (top). In this case the error between the recurrence plot approximated

using the covariance of the random process can be large.
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