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ABSTRACT

We present an intensity neighborhood-based system for segment-
ing arbitrary biomedical image datasets using supervised learning.
Because neighborhood methods are often associated with high-
dimensional feature vectors, we explore a Principal Component
Analysis (PCA) based method to reduce the dimensionality (and
provide computational savings) of each neighborhood. Our results
show that the system can accurately segment data in three appli-
cations: tissue segmentation from brain MR data, and histopatho-
logical images, and nuclei segmentation from fluorescence images.
Our results also show that the dimension reduction method we de-
scribed improves computational efficiency while maintaining similar
accuracy.

Index Terms— pixel classification, image segmentation, inten-
sity neighborhood, dimension reduction

1. INTRODUCTION

Automated image segmentation is becoming increasingly important
in biomedical research and clinical applications. In experimental
biology and medicine, tissues, cells or organs must be segmented
and isolated for subsequent quantitative analysis. Due to the vast
increase in the capability of image acquisition of modern devices,
automated methods are often needed to segment such large amount
of data. Several image segmentation methods have been described
in the past (see for example [1, 2]). However, a common drawback
of these methods is that most of them are not general and are specif-
ically designed for one type of image. Thus, without a significant
amount of tuning and calibration, these algorithms often cannot be
employed in other applications if accurate results are necessary.

To overcome this drawback, we describe an automated segmen-
tation system for general application in biomedical image datasets.
We consider the strategy of pixel level classification utilizing su-
pervised learning algorithms as an attractive choice because, given
enough training samples (already segmented images), this strategy
can be used to construct algorithms capable of performing accu-
rately across different image modalities and different structures of
tissues. We note that several works in the area have been described
(see for example [3]). The majority of these, however, are based on
the design (or availability) of specific numerical features that must
be carefully chosen for each application. In order to make this type
of system more general, we choose a nonparametric feature vector
consisting of neighborhood intensities.

In our system, a few pre-segmented images are taken as input.
An approach for selecting appropriate pixels (and their neighbor-

978-1-4244-4128-0/11/$25.00 ©2011 IEEE

1649

hoods) for training the classifier is described. Our method models
both variations in scale and rotation as part of the classification train-
ing procedure. To overcome the difficulties of working with high
dimensional data (i.e. the number of pixels in each neighborhood
window) we also describe a method based on principal component
analysis (PCA) to reduce the dimensionality of the data, improv-
ing the computational efficiency while maintaining accurate results.
We apply this segmentation system to three different datasets: brain
tissue segmentation from magnetic resonance (MR) image data, seg-
mentation of tissues in histopathological images, and segmentation
of nuclei from fluorescence microscopy images. We compare our re-
sults to the results produced by state of the art methods for each ap-
plication. Our results show that our system can achieve comparable
or better accuracy than some state of the art methods in each appli-
cation. Our results also show that the dimension reduction method
improves computational efficiency with comparable results.

2. METHODS

As mentioned above, our supervised learning-based segmentation
system takes as input a few pre-segmented example images and for
all the pixels in the example images, each labeled pixel’s square
neighborhood is utilized and reordered into a nonparametric feature
vector for that pixel. For this idea to work well across different ap-
plications, the information content provided by the example images
must be mined carefully. It is important to model intensity differ-
ences that may occur between different images of the same modal-
ity, as well as variations in scales and orientations that may occur.
Empirical approaches for mining such information are described in
sequence below. With such an approach, however, even a few pre-
segmented images could generate several million pixels to be avail-
able for training a classifier. The computational cost of training a
classifier with P training examples usually ranges from P? to P*
[4]. To overcome this limitation, we will investigate two aspects: (1)
reducing the amount of training data by selecting “important” pixels
into the training set; and (2) reducing the dimensionality of feature
vectors.

Our system consists of a training stage and a testing stage. In
the training stage, we normalize the input data, model scaling and
orientations of the input data via filtering and resampling, and extract
important pixel windows while reducing their dimensionality. We
then train several classifiers at different scales. In the testing stage,
predictions for new unknown data are made by combining (via a
voting procedure) the trained classifiers at different scales.
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2.1. Data Normalization

Intensity normalization for input data is important because variations
in intensity from image to image may prevent high classification ac-
curacy. Many papers have been published for solving specific nor-
malization problems in different modalities of imaging. Common
examples include: correction of different bias fields in MRI, illumi-
nation heterogeneity in fluorescence imaging, etc. In this specific
implementation of our system, we opt for a simple approach where
all pixel intensities in the training and testing images are uniformly
mapped to the [0,1] range, while the top (and bottom) 1% pixels are
discarded. This approach is used in all experiments below. We note
that in the presence of application specific information, the intensity
normalization procedure can be improved.

2.2. Window selection and rotational variation modeling

For a set of labeled pixels, each pixel’s neighborhood intensities are
selected as a general nonparametric feature vector. Neighborhood
intensities are constructed by imposing a pre-defined size window
centered at the given pixel, in which pixels inside the window are
regarded as neighbors. In this paper, we choose square windows of
size N x N for 2D data, and cube window of size N x N x N
for 3D data (different shapes of windows and their performances
will be explored in future work), centered at the given pixel (IV is
an odd number). Pixels’ intensities inside the window are chosen
and reordered to comprise a N 2 (or N2 in 3D) nonparametric fea-
ture vector associated with the given pixel. In addition, we note that
the intensity neighborhood vectors comprised from square or cube
windows are not rotationally invariant. In most biomedical imaging
applications of interest, however, a fixed coordinate frame cannot be
assumed and rotational variation must be accounted for. We there-
fore virtually augment the set of training pixels to include rotated
versions of each window. This is accomplished by rotating each
example image using linear interpolation. In addition, we include
flipped (coordinate reversed) versions of windows to increase useful
information. Naturally, computational complexity constraints limits
us to model only a finite number of rotations and flips, and the details
are described in Section 3.

2.3. Modeling scale information

We also note that due to different structure sizes of object tissues,
organs, or cells, information at different scales is often important for
appropriate classification. We extract information at different scales
from the images by utilizing a standard multi-resolution procedure
[5] in which the training images are first convolved with a Gaussian
kernel for smoothing at each scales € {0, 1,2, ..., S}, and the neigh-
borhood patches are assembled by subsampling at every 2° pixels to
construct the neighborhood vectors.

2.4. Reducing the size of the training set

As mentioned above, even a few example labeled images (especially
when scales and variations are modeled explicitly as above) can gen-
erate several millions of training pixels. We therefore describe an
empirical procedure to select “important” neighborhoods from the
entire set of labeled neighborhood (including those artificially ro-
tated, flipped and scaled as described above). We first define the
pixel near the boundaries of two or more classes as boundary-type
pixel and the pixel inside the region of single class as interior-type
pixel, and we assume that it is more important to include rotated ver-
sions of neighborhoods of boundary-type pixel. Therefore, we only
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augment the set of windows by rotating and flipping pixels whose
window neighborhood contains pixels that belong to two or more
classes. We also assume that much redundant information is con-
tained in each class (type of tissue to be segmented). Therefore, we
implement the K -means based algorithm for selecting only a set of
Q representative neighborhoods in the following steps:

1. A K-means procedure is used to divide the input labeled
training images into R non-overlapping spatial regions (R is
manually defined).

2. Each of the pixels in the regions defined in step 1 are cat-
egorized as a boundary-type or interior-type pixel. In each
region, the K -means procedure is used to select only certain
pixels’ intensity neighborhoods for training (the amount se-
lected is calculated based on R and ). This is done for both
boundary (including rotated and flipped windows) and inte-
rior type pixels, and is repeated for each scale s.

3. Finally, for each scale s, all the clustered samples for both
boundary-type and interior-type of all subsets and all classes
are combined as the training set containing () samples and
thus, several training sets associating with different scales s €
{0,1,..., S} can be built.

2.5. Reducing the dimensionality of the training set

In addition to the procedure for reducing the number of training pix-
els explained above, we also utilize a PCA-based procedure to re-
duce the size of each feature vector (which in our case is composed
of intensity neighborhoods). Since neighborhood feature vector is
typically high dimensional, for example, for a N x N x N neighbor-
hood, the dimensionality becomes N3, which will increase greatly
when the neighborhood size increases. Thus, we consider reducing
the dimensionality of vectors by first converting the intensity neigh-
borhood vector to a feature vector containing uncorrelated variables
via principal component analysis (PCA) [6] and then discard useless
variables for classification. Based on an existing training set contain-
ing Q samples of N dimensions, PCA method is implemented in
a standard procedure in which a covariance matrix is built from the
samples and the eigenvectors of the covariance matrix are calculated
and sorted in order of descending eigenvalues; then, for each sam-
ple in the training set, the dot product between each eigenvector and
that pixel’s neighborhood vector is calculated as the coefficient in
this sample’s PCA based feature vector. Then, stepwise discriminant
analysis (SDA) [6] is used for automated determination of subspace
dimensionality and selection of the principal components from the
PCA feature vectors. The SDA method chooses the variables from
the feature vector which maximize the ratio of the variance between
the classes to the variance within the classes. Thus, we are able
to produce a new training set with the same samples but associat-
ing with a lower dimensional PCA based subspace feature vector by
selecting the necessary principal components from the PCA based
feature vector using SDA method.

Additionally, we note that the computational complexity of
actual classification (testing phase) using Support Vector Machine
(SVM) with a non-linear kernel such as RBF kernel is O(nd), where
n denotes the number of support vectors, and d the feature dimen-
sions [7]. Thus, based on the same training set but with a lower
dimension (PCA vector), computational efficiency can be improved.

2.6. Training Stage and Testing Stage

In our current implementation, one classifier is trained for each im-
age scale (computed as described above). We utilize the support



vector machine (SVM) classifier, in which the Gaussian radial basis
function (RBF) kernel is chosen, and parameters such as weights,
RBF kernel size, etc. are optimally selected by the cross valida-
tion procedure described in [7]. For multi-class classification, we
use the “one-against-one” approach [8], and the popular "LibSVM”
software [7] is used for implementation.

In the testing stage, the final result is predicted through a con-
fidence voting strategy among the results from individual classifiers
trained at each scale. For a given pixel ¢, the prediction label pro-
vided by the individual classifier at scale s (s € 0,1,...,.5) is de-
noted as L3, and the confidence of assigning class ¢ (c € 1,2, ..., C)
to the pixel i at scale s is denoted as F'(L; = c). The final prediction
label L™ is calculated as follows:

s
LI —  argmax F(Li =c 1

! ce{toC) ; (Li=c) M
In our work, we choose the posterior probability Pr(L; = c¢/z;) (x;
is the intensity neighborhood vector/ PCA based subspace feature
vector for the given pixel ) as the confidence, and the multi-class
posterior probabilities in SVM can be estimated by combining all
the pairwise class probabilities [9].

3. EXPERIMENTAL EVALUATION

In this section, we test our system in three different applications.
In addition, we explore the effect of dimensionality reduction us-
ing the PCA-based approach described above. We evaluate the per-
formances both qualitatively and quantitatively and compare our re-
sults to those produced by state-of-the-art algorithms specifically de-
signed for each application. We choose the neighborhood size to be
3 x 3/3 x 3 x 3 for 2D/3D data (performances of different neighbor-
hood sizes will be explored in future work). When required, images
are rotated along the Z axis both clockwise and counter-clockwise
by 45 degrees. They are flipped left and right, up and down in X-Y
plane for each orientation so a total 9 neighborhood variations un-
der totally 5 scales (scale s from O to 4). We also note that these
parameters (the parameters pertaining to the general segmentation
method we propose) are keep constant for all the experiments in this
paper. The segmentation tasks and datasets to which we apply our
algorithm are:

o Segmentation of brain MR images: The IBSR real Tl1-
weighted brain-MR dataset [10] is chosen, in which three
tissues, cerebrospinal (CSF), gray matter (GM), and white
matter (WM) are to be segmented. Each brain data contains
128 scanned slices. The dataset makes available expert hand
segmentations of each brain in the dataset, which we use for
training and testing the classifier. In our tests, 4 brain images
were randomly selected for training, and 14 brain images
were used for testing. In order to evaluate the quality of our
segmentations, we compute the dice metric for the 14 test
datasets [11]. Results are compared to the work of Awate et
al [11] who showed overall high quality in segmenting the
same dataset using a semi-supervised learning approach.

o Segmentation of H&E stained histopathology images of ter-
atomas [3]: we utilize a dataset where the labeled data was
provided by a pathologist (JAO). We note that these are color
(RGB) images. This is a difficult problem since teratomas
are notorious for not having well known tissue organization.
We focus on segmenting four tissue types: background/other
tissues (O), bone (B), cartilage (C) and fat (F). 4 images
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were randomly selected for training and 10 images were ran-
domly selected for testing. Since there is no current robust
method for tissue segmentation in teratoma histology im-
ages, we choose the popular color K-means method [12] for
comparison. Mean classification accuracy is used to assess
accuracy.

o Segmentation of nuclei from fluorescence images: expert seg-
mented nuclei images are available from Dr. Murphy’s group
at Carnegie Mellon University [13]. The data consists of 48
2D images, out of which 6 images were randomly selected
for training and the remaining images were used for test-
ing. The results were assessed following Coelho et al. [13].
Three types of metrics are used for evaluation: (1) the Rand
and Jaccard indices, which measure the fraction of the pixel
pairs where the segmentation and the ground truth agree. The
larger the value, the better the result. (2) Error Counting:
split, merged, added, and missing, which counts the errors in
segmenting nuclei. (3) Spatially-Aware Evaluation: NSD and
Hausdorff metrics, which measure the distance of segmented
nuclei to the ground truth. We calculate the mean values for
all test images, and compare with the best results in [13].

3.1. Results

Figure 1 contains raw unprocessed images (a,d,g), ground truth
(c.f,j), and results of using our segmentation method without di-
mension reduction (h) and with dimension reduction (b,e,i). We
note that the results presented here are without any post processing
operations. In our experience, results for each application can be
made visually more appealing (and quantitatively more accurate) by
utilizing simple post-processing operations such as morphological
closing and opening. Table 1 contains quantitative results on each
application as described above. In the brain MR image dataset, on
average, our method (both non-PCA and PCA) performs as well or
better than the method described by Awate et al [11]. In the teratoma
histology dataset, the overall classification accuracy of four tissues
(both non-PCA and PCA) outperforms the color K -means method.
In the nuclear dataset, although Hausdorff distance metric and added
error metric of our results are much larger than the compared result
due to the noise effect, which can be easily improved using some
simple morphological operations, the overall performances are com-
parable to the results in [13]. We note that the PCA results are, on
average, only slightly less accurate than the non-PCA results.

4. CONCLUSION AND DISCUSSION

In this paper, we proposed a supervised learning based system for
segmenting biomedical images. The system is based on a neighbor-
hood intensity window approach for characterizing each pixel, tak-
ing into account rotational and flipped variations, as well as multiple
scales. An empirical procedure for selecting a sub-portion of training
pixels, together with dimension reduction operation, was described.

The method was applied to three different biomedical image seg-
mentation tasks: segmentation of brain tissues from MR images,
segmentation of teratoma tissues from histopathology images, and
segmentation of nuclei from fluorescence microscopy images. Re-
sults showed that the segmentation produced by our methods com-
pared favorably (on average as well or better) to other compara-
ble methods. In addition, the results showed that when reducing
the dimensionality from 27 (non-PCA vector) to 14 (PCA vector),
for example, the average practical computational time for training a
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Fig. 1. Performance of our system in three applications: (a), (d) and (g) are original brain-MR, histology and nuclei images, respectively.
Panels (b), (e) and (i) are results produced by our system with dimension reduction. Panels (c), (f) and (j) are ground truth images. In addition,

we show the nuclei result using non-PCA vectors in Panel (h).

Table 1. Quantitative Evaluation for Three Applications

Case Non-PCA PCA Comparison

brain (GM) 0.9028 0.8953 0.8074

brain (WM) 0.8185 0.8024 0.8868

histology (O) 89.39% 86.19% 55.20%

histology (B) 53.01% 29.03% 29.79%

histology (C) 69.11% 70.45% 51.06%

histology (F) 85.76% 85.08% 58.73%
nuclei (RI) 96% 96% 96%
nuclei (JT) 2.5 2.5 2.2
nuclei (Hausdorff) 130.2 132.6 12.9
nuclei (NSDx10) 0.86 1.12 0.7
nuclei (Split) 0.8 0.2 1.1
nuclei (Merged) 2.8 3.0 1.2
nuclei (Added) 6.1 5.8 0.3
nuclei (Missing) 0.1 0.1 2.9

SVM model for brain segmentation reduces from 4.48 x 10* sec-
onds to 1.53 x 10* seconds (approximately 66% savings) and the
time for segmenting one brain data reduces from 1.14 x 10* sec-
onds to 9.33 x 10° seconds (approximately 18% savings), which
proves the computational efficiency of using PCA vectors. Finally,
we note that the comparable methods were often designed for each
specific application, while our system is general: the same system,
with identical training procedure, was used for all applications.
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