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� Abstract
Mesothelioma is a form of cancer generally caused from previous exposure to asbestos.
Although it was considered a rare neoplasm in the past, its incidence is increasing worldwide
due to extensive use of asbestos. In the current practice of medicine, the gold standard for
diagnosing mesothelioma is through a pleural biopsy with subsequent histologic examination
of the tissue. The diagnostic tissue should demonstrate the invasion by the tumor and is
obtained through thoracoscopy or open thoracotomy, both being highly invasive surgical
operations. On the other hand, thoracocentesis, which is removal of effusion fluid from the
pleural space, is a far less invasive procedure that can provide material for cytological examina-
tion. In this study, we aim at detecting and classifying malignant mesothelioma based on the
nuclear chromatin distribution from digital images of mesothelial cells in effusion cytology
specimens. Accordingly, a computerized method is developed to determine whether a set of
nuclei belonging to a patient is benign or malignant. The quantification of chromatin distribu-
tion is performed by using the optimal transport-based linear embedding for segmented nuclei
in combination with the modified Fisher discriminant analysis. Classification is then per-
formed through a k-nearest neighborhood approach and a basic voting strategy. Our experi-
ments on 34 different human cases result in 100% accurate predictions computed with blind
cross validation. Experimental comparisons also show that the new method can significantly
outperform standard numerical feature-type methods in terms of agreement with the clinical
diagnosis gold standard. According to our results, we conclude that nuclear structure of meso-
thelial cells alone may contain enough information to separate malignant mesothelioma from
benign mesothelial proliferations. VC 2015 International Society for Advancement of Cytometry
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Malignant mesothelioma, a type of cancer in the lung, is a universally fatal disease with

an increasing incidence worldwide (1). Mesothelioma is generally caused by previous

exposure to asbestos. Millions of people are exposed to asbestos every year and more

than one hundred thousand people die each year across the globe from asbestos-related

diseases, with approximately three thousand new mesothelioma cases each year in the

United States alone (2). Although the incidence in the U.S. peaked in 2010, predicted

peak years for European and Eastern countries are still to come (3,4). These predictions

are based on historical statistics and the clinical nature of mesothelioma, that is, meso-

thelioma usually develops 20–50 years after asbestos exposure. Moreover, the risk for

developing mesothelioma varies with the type of asbestos exposure. For example, crocid-

olite, which is no longer mined in the U.S., is 500 times more toxic than chrysotile (5).

Malignant mesothelioma can also occur due to less common causes such as radiation,

viruses (e.g., Simian virus 40) and germline mutations in BAP-1 (6–8).

Mesothelioma cancer cells originate from mesothelium, which is a membrane

that forms the outer lining of the lung. In mesothelioma, these cells become abnor-
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mal and divide without control or order. Histologically, meso-

thelioma can be categorized in to three major types: epithe-

lioid type, sarcomatoid type, and biphasic type and the

incidence of each is approximately 60, 20, and 20%, respec-

tively (9). Regardless of the histological type, they invade

nearby tissues and organs, which lead to a high mortality rate

with a short survival period (10). Various studies reported the

median survival of a patient diagnosed with mesothelioma

between 6 and 18 months (11,12). These grim statistics reflect

the fact that, mesothelioma is difficult to diagnose due to the

similarity of its symptoms to other lung diseases (13,14) and

these symptoms do not become apparent until late stages of

disease. On the other hand, early diagnosis of mesothelioma is

important for clinical management of the patient; for exam-

ple, treatment at an early stage of disease significantly

improves patient survival (15). Moreover, early diagnosis is

important because of the issues of compensation and lawsuits,

especially if the jurisdiction will only accept cases brought on

behalf of a living victim (16,17).

The current gold standard for malignant mesothelioma

diagnosis is through a pleural biopsy with subsequent

histologic examination of the tissue (18), which is often

complemented by immunohistochemistry examination. The

extraction of diagnostic tissue is performed through a thora-

coscopy or open thoracotomy. Both of these procedures are

invasive and costly. On the other hand, thoracocentesis, which

is removal of effusion fluid from the pleural space, is a far less

invasive procedure that can provide material for cytological

examination. Though crucial for the diagnosis (19), tissue

invasion cannot be determined from cytological examination

and therefore such an examination, by itself, is usually not

sufficient for a definitive diagnosis. In this study, we describe

a computational method to detect malignant mesothelioma

based on the nuclear chromatin distribution from digital

images of mesothelial cells in effusion cytology specimens.

Examination of nuclear chromatin distribution of the meso-

thelial cells to determine the presence of mesothelioma is a

challenging task for cytopathologists, because benign and

malignant nuclei look similar to human eye. This nuclear sim-

ilarity can be clearly seen Figure 1.

In the past few years, computational methods became

more popular than before especially for cell and nuclear seg-

mentation and quantitative analysis on segmented structures

(20–23). In this particular study, we aim to predict the diag-

nosis of a patient by analyzing digital images of cells from

pleural effusion fluid of patients with both malignant meso-

thelioma and benign effusions. If successful, the new tech-

nique will have the potential to eliminate or reduce the need

for tissue biopsy.

This article is organized as follows. The next section

describes in detail our sample procurement, preparation, imaging,

and image analysis pipeline. After acquisition of light microscopy

images of stained effusion fluid, we first manually select nuclei

from relevant mesothelial cells under supervision of a cytopathol-

ogist. The selected nuclei are then semi-automatically segmented

using a level set-based method (24). After segmentation, the chro-

matin content of each segmented nucleus is processed to obtain

its linear optimal transport (LOT) embedding, as described in

detail in Wang et al. (25) and in Basu et al. (26). Classification is

performed by using a linear discriminant analysis-based k-nearest

neighbor classifier on LOT space. Finally, we show that this

method can outperform traditional numerical feature-based

approaches for comparing nuclei, and can achieve high accuracy

in a cohort of 34 patients. In addition, we show the approach can

be used to visualize interesting differences in nuclear morphology

between different nuclei types.

MATERIALS AND METHODS

Sample Procurement, Staining, and Image Acquisition

Cytology slides are obtained from the archives of the

departments of pathology of Allegheny General Hospital and

the West Penn Hospital (Institutional Review Board approval

RC-5713). Selected slides include patients with both malig-

nant mesothelioma and benign pleural effusions. All patients

selected for our study had a cytological examination of pleural

effusion and a concurrent or subsequent pleural biopsy, which

served as the gold standard for our evaluation procedure.

Effusion cytology specimens were stained with the Diff-Quik

(27) stain. Digital images of mesothelial cells were acquired

using an Olympus BX50 microscope equipped with a Plan

CN 60X objective (Olympus America, Central Valley, PA) and

IN1820 spot insight firewire two megapixel camera (Spot

Imaging Solutions, Sterling Heights, MI). Images of at least 30

Figure 1. Sample mesothelial nuclei are show in this figure. The left-most image is taken from a benign effusion, and the rightmost image

is taken from a mesothelioma patient. Sample selected nuclei from each type are given in the center, showing the similarity of different

types of nuclei. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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mesothelial cells per case were obtained. Patient cases were

anonymized to prevent any bias and cases with insufficient

numbers of mesothelial cells were excluded from the study. A

total of 34 patients were used for this study, including 16 cases

of malignant mesothelioma and 18 cases of benign pleural

effusions.

Nuclear Segmentation

We used a semi-automatic procedure for segmenting

the relevant nuclei from the images acquired as described

above. Mesothelial cells were first manually identified from

digital images under the supervision of a cytopathologist

(O.Y.). Rough initial borders for each nucleus were man-

ually selected as input for a level-set method (24), which

was applied to automatically achieve the final contours of

the segmented nuclei. Figure 2 contains a few examples of

segmented nuclei (second row) with their final contours in

white, and the corresponding nuclei after our normalization

(third row), which is described in more detail below. A

total of 1,080 nuclei segmented from digital images in this

study, where 590 nuclei for benign cases and 490 nuclei

malignant cases.

Comparing Nuclear Chromatin Using Transport-Based

Morphometry

Our approach for classifying nuclear chromatin images

relies on the idea of computing the optimal transport plan

between two images. In this work, however, we use the linear-

ized version (explained in detail below) of the optimal trans-

port metric we have recently described in Refs. 25 and 26.

Before the application of the transport-based morphometry

pipeline, the segmented nuclear images (one nucleus per

image) were pre-processed as follows. The luminance compo-

nent of segmented RGB nuclei images was extracted and

intensities were normalized so that the pixel brightness indi-

cates the amount of locally concentrated chromatin (the

brighter the pixel, the more chromatin). The sum of inten-

sities in each segmented nuclear image is set to one and single

nucleus images are normalized to remove relative translations

and rotations, using the procedure proposed in Rohde et al.

(28), where the images are centered to eliminate the transla-

tion factor and rotated such that the major axis is aligned ver-

tically. Example segmented and normalized nuclear images

are shown in Figure 2 (third row).

After normalization, the chromatin content of each seg-

mented nucleus was processed to obtain its LOT embedding

(25) using 800 particles for approximating each image. The

particle approximation process is performed by using Lloyd’s

weighted K-means algorithm (29) to adjust the position and

weights of a set of N particles, where N<<M and M is the

number of pixels in the image. The details and intuition

behind this procedure can be found in Supporting Informa-

tion. An illustrated result of the particle approximation step

can be seen in Step 1 of Figure 3.

The optimal transport plan between each nucleus image

and a reference image is computed using the ‘mass’ of the par-

ticle approximation, where ‘mass’ is the collection of pixel

intensity values and reference image is the Euclidean average

of intensities across the entire image dataset (after translation

and rotation effects have been removed). One of the major

benefits of this technique is a dramatic reduction in computa-

tional complexity when computing pairwise transport distan-

ces between images in a dataset.

Although a detailed explanation of the LOT approach is

available in the Supporting Information, for completeness, in

this study, we offer the following summary. In brief, we use

aforementioned reference image (Euclidean average of inten-

sities across the entire image dataset) as a template. That is, let

the dataset be composed of K images I1; I2; . . . ; Ik . The

Figure 2. Example images showing segmentation process. First row (A–F) shows the initial digital images acquired each having a field of

view, second row (G–L) shows sample segmented nuclei from digital images of the first row, and third row (M–R) shows the final images

after normalization process. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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reference image is computed as I051=K
XK

i51
Ii . We then

compute a particle representation for each image (and the

template image) as described before. This approximation is

meant to decrease the computational complexity of the overall

method by selecting the “most important” pixel locations

based on a weighted K-means approach. Note that, we have

chosen N 5 800 particles to be used for approximating each

image. The output for each image is the position of each par-

ticle, and the weight (mass which corresponds to intensity val-

ues) of each particle in approximating the corresponding

image. For example, the approximation for the reference

image can be written as I05
XN

k51
qkdxk

where dxk
corre-

sponds to a discrete delta function placed at position xk in

that image, whereas qk corresponds to the ‘mass’ at that posi-

tion. Likewise, let I15
XN

j51
mjdyj

, be the particle approxima-

tion of another image in the database. To obtain the linear

embedding of image I1 we solve for the optimal transport

between the particle approximations of I0 and I1.

More precisely, we use the optimal transportation (Kant-

orovich–Wasserstein) framework to quantify how mass in an

image, in relative terms, is redistributed to morph that image

into the template image. Note that mass in this study corre-

sponds to pixel intensities, which in this case correspond to

chromatin density within the nuclei. Hence, the meaning of

transport distance between two nuclei becomes the transport

distance between localization of chromatin distribution of

two nuclei. We describe the mathematics of the traditional

optimal transport (OT) framework, and in particular the

geometry behind it, in the Supporting Information. As a sum-

mary, the optimal transportation distance, also known as the

Kantorovich–Wasserstein distance, between two measures

(images) P1 and P2 on domain p is defined as:

d P1;P2ð Þ5 inf
l2
Q

P1;P2ð Þ

ð
p3p

jx2yj2dl

0
@

1
A

1 2=

(1)

where l is a coupling within the set of all couplings between

P1 and P2 . Note that, the set of all couplings
�Q

P1;P2ð Þ
�

is

the set of all probability measures on with the first marginal is

P1 and the second marginal is P2. Each coupling describes a

transportation plan l A03A1ð Þ, which tells the amount of

“mass” that is originally in set A0 transported into set A1. In

Figure 3. Transport-based morphometry framework is summarized. Step 1 illustrates the particle approximation on a single nucleus

image. Step 2 shows an example optimal transport solution over particles of two sets of particles. In Step 3, a demonstration of LOT

embedding from OT manifold is given. Finally, in Step 4 the projection of data in LOT space on to first LDA direction is depicted for the

purpose of classification. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Eq. (1), the space of probability measures is endowed with a

Riemannian manifold, which is visualized in Step 3 of Figure

3 (OT manifold). This Riemannian manifold structure is

needed to be able to consider paths and in particular the

shortest path (i.e., geodesics) connecting any two probability

measures, or in our case, two nucleus images in the image

space.

In, Wang et al. (25) used Eq. (1) for a finite number of par-

ticles described here as particle approximation step. Recalling the

particle-based definitions of images as I05
PN

k51qkdxk
and

I15
PN

j51mjdyj
optimal transportation distance between these

two images can be found by minimizing

d2 I0; I1ð Þ5 min
f 2
Q

I0;I1ð Þ

XN
i51

XN
j51

jxi2yj j2fi;j (2)

subject to constraints
PN

j51fi;j5mi for i51; . . . ;N ; andPN
i51fi;j5qj for j51; . . . ;N . In Figure 3, Step 2 illustrates a

sample transportation map between two images. The mini-

mization is performed using the linear programming

approach described in Wang et al. (25). The linear embed-

ding of I1 is obtained by applying the discrete transporta-

tion map between the reference I0 and I1 to the coordinates

yj via

t15ð ffiffiffiffiffiq1
p

a1
n . . .

ffiffiffiffiffiffi
qN
p

aN
n Þ

T
(3)

where ak is the centroid of the particle qkdkk
computed via

ak
n5
XN
j51

fk;jyj=qk (4)

We denote t1 to be the LOT embedding of I1. This

embedding has dimensions t1 2 RN32 for two dimensional

(2D) images.

Classification

To perform the classification task we compute a one

dimensional linear discriminant subspace that can be used for

classifying sets of nuclei. To that end, we computed a linear

classification function to distinguish individual nuclei from

the two classes (benign and malignant) by using the standard

Fisher linear discriminant analysis (LDA) technique (30) on

the LOT embedding of each nucleus in the training set. The

outcome of this procedure is a projection vector, denoted as

w�LDA, of the same size as each LOT embedding.

Given a set of LOT embeddings x1;. . .; xN from a given

class, the projection of each nucleus was computed via xT
k

w�LDA and stored as training data, where w�LDA is the projection

line. Given a set of LOT embeddings from nuclei from an

unlabeled patient y1;. . .; yM, the projection of each nucleus yT
i

w�LDA was computed. Figure 3 Step 4 shows the histograms of

the projected data onto first LDA direction. The class of an

unknown set of nuclei is computed by classifying each yl via a

K-nearest neighbor algorithm [see Bishop and Nasrabadi (30)

for details], and taking the majority ‘vote’ (the most common

class assignment of the nuclei of the particular patient). The

appropriate number of nearest neighbors K is computed with

a blind cross validation procedure with-in the training set

(double cross-validation).

Visualization of Discriminating Information

The transport-based morphometry pipeline described

above, and in more detail in the Supporting Information, can

also be used to visualize discriminating information between

two classes (in this case, benign vs. mesothelial cells). This is

possible because the LOT embedding procedure described

above can also be viewed as an invertible transform. That is,

after transforming image to LOT space one can transform

back to image space using particles and their weights in LOT

space. Note that, t1 is the LOT embedding of I1 with dimen-

sions t1 2 RN32 for 2D images. Hence, the embedding is

interpretable in the sense that any point in this space can be

visualized by simply plotting the vector coordinates (each

in R2) in the image space p, which makes LOT an invertible

transform. This inversion operation is described in detail in

Refs. 25 and 26, but in short, any point xk in LOT space con-

tains within it a transport map [f in Eq. (4)], which can be

used to visualize the template masses in image domain, and in

this way an image corresponding to point xk can be visualized.

To visualize the most discriminant differences between benign

and malignant cells, it is therefore possible to simply plot the

LDA line w�LDA computed as described above, via this inversion

operation. As we have described in Ref. 31, however, simply

plotting w�LDA can lead to misleading interpretations given that

nothing constrains the LDA procedure to visualize the data in

image domain. Meaning that the direction w�LDA may not have

any phenotypes ‘nearby’ and hence may not be representative

of any trend in the data. In Ref. 31, we have described a penal-

ized version of the method, denoted in this study as w�pLDA, that

helps enforce the direction for visualization of the data (images

of cells) by combining the cost functions of the standard LDA

and the principal component analysis method.

Figure 4. Nuclei distribution histograms for benign and malig-

nant mesothelioma comparison. The row of nuclei images

beneath the histogram bins are the normalized grayscale (upper

row) visual representations of nuclei along the optimal transpor-

tation pathway (geodesic) that best discriminate between these

two groups of nuclei.
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Figure 4 shown below contains a result of applying the

penalized linear discriminant analysis (pLDA) method to this

dataset. In this figure, histogram bins represent the distribution

of nuclei in LOT space, such that their LOT embeddings are pro-

jected onto the first (most discriminant) direction of pLDA. The

nuclei images below these histogram bins are the images of

nuclei along the pLDA direction, which is generated by simply

plotting the vector coordinates of each particle of the average

image. We note that in this computation, we have used the

pLDA method modified as described in Ref. 31. Finally, we men-

tion that it is not possible to perform this operation using the

standard numerical feature-based approach described above, as

the operation of extracting features from an image is not inverti-

ble. That is, although it is possible to extract features from an

image of a cell, generally speaking, it is not possible to recon-

struct an image from the extracted features.

Comparison

To show the effectiveness of proposed method, we have also

included results obtained using a numerical feature-based

approach for comparison. This feature-based approach is similar

to the approach described earlier in Wang et al. (31). A total of

256 numerical features were extracted per nucleus. These features

include ‘morphological features’ (such as area, convexity, circu-

larity, perimeter, eccentricity, and equivalent diameter), which

are widely used in image analysis in digital pathology. In addi-

tion, the feature set also includes ‘texture features’, which in our

case consisted of Haralick and Gabor features as described in

Refs. 32 and 33. Finally, the feature set also included wavelet-

based features, which can capture multi resolution information

from images as described in Wang et al. (20). Features were nor-

malized after extraction, so that the variance of each feature was

set to one. A ‘leave one patient out’ cross validation strategy was

applied to train the classification procedure. The training process

also consisted of applying the stepwise discriminant analysis (34)

technique for feature selection, and subsequently applying the

same LDA-based classification procedure described above to

obtain the final predictions for each patient. In the comparisons

below, the training and testing procedures used identical data for

both LOT and numerical feature-based approaches.

RESULTS

To evaluate the performance of proposed method, we

used the standard “leave one patient out” cross validation

strategy. In this study, we test the ability of our method to

classify patients whose nuclei were not used in the training

process. Therefore, to classify a given patient, the nuclei

belonging to that patient are removed from the training data-

set and kept separated as testing data. A classifier is then

trained using training data only and then used to compute the

projection score of the separated patient’s nuclei. In all classi-

fication confusion matrices shown in Table 1, each patient was

diagnosed by using the LDA-based K-nearest neighbor voting

classifier (computed as described above) trained without

using nuclei from that patient. In summary, no testing data is

used in the training process, whereas the LOT embedding pro-

cedure above is the same for every image, and does not use

class labels. Because the error between the average image cal-

culated over the entire set and the average images calculated

over just the training sets (one-patient-out) are negligible, we

take the reference image to be the empirical mean of the entire

dataset and calculate LOT just once. Because the averaging

operation does not use class labels, we note that this proce-

dure does not violate the common assumptions related to

supervised learning, that is, the same operation can be per-

formed for classifying a patient whose class is unknown.

Table 1 contains a summary of the classification results

obtained for our diagnostic challenges. Results using the LOT-

based approach are shown in Table 1a. For comparison purposes,

in this study, we have also included results obtained using a

numerical feature-based approach described earlier, which are

given in Table 1b. Results computed using the transport-based

approach are clearly superior in accuracy to those computed

using the standard numerical feature-based approach.

In our diagnostic challenge, we also sought to display

and learn what discriminative nuclear properties exist between

nuclei of benign and malignant classes. Figure 4 contains a

visualization of the most discriminant direction between

benign and malignant cells. In this figure, the height of each

bar corresponds to the number of nuclei (within each class),

which were most closely associated (in the sense of the trans-

port metric described above) to the nuclear configuration

directly beneath it. Hence, it is a projection of the data onto

the pLDA direction computed as described above. We note

that this computation is also performed using held out data.

That is, the pLDA direction was computed using training

data, whereas the histograms shown are computed using sepa-

rate test data using 10% of the data. Student’s t-test is calcu-

lated between two populations of patients (benign vs.

malignant) on the most discriminant direction of pLDA, and

Table 1. Quantitative results for malignant versus benign patient classifications

CONFUSION MATRIX AND ACCURACY

FOR LOT-BASED APPROACH

CONFUSION MATRIX AND ACCURACY FOR NUMERICAL

FEATURE-BASED APPROACH

Patient based

Predicted diagnosis

Patient based

Predicted diagnosis

Benign vs. Malignant Benign Malignant Benign vs. Malignant Benign Malignant

Actual diagnosis Benign 18 0 Actual diagnosis Benign 16 2

Malignant 0 16 Malignant 5 11

Accuracy 100% Accuracy 79%
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the P-value associated with the t-test for differences of means

in this computation was P 5 0.0004 (computed using test data

only), which corresponds to significance between set of nuclei

belonging to benign patients and set of nuclei belonging to

malignant patients. The figure therefore conveys that, in tra-

versing from benign to malignant nuclei, the chromatin distri-

bution is changing. On average, malignant cells tend to have

more of their chromatin distributed toward the center of the

nuclear envelope, whereas benign cells, relatively speaking,

tend to have their chromatin more concentrated toward the

border of the nucleus.

DISCUSSION

In this study, we presented a computer-aided diagnosis

approach for classification of malignant mesothelioma based

on nuclear structure of mesothelial cells in the effusion cytol-

ogy specimens. The procedure we described combines a

transport-based linear embedding for each image together

with simple LDA-based K-nearest neighbor voting classifier.

The proposed approach was able to achieve 100% predictive

accuracy (perfect specificity and sensitivity) from effusion

cytology of 34 patients, whose clinical diagnosis is known.

The quantitative results are promising and therefore the pro-

posed approach has a potential to eliminate the need for an

invasive procedures for diagnosis. In addition, this method is

capable of showing nuclear morphology differences between

benign and malignant mesothelial nuclei. Such differences are

difficult to visualize from the raw, unprocessed, data.

Our future directions include, expanding the dataset for

better analysis of the methodology in terms of robustness and

reliability. With the increase of data size, an automated nuclei

segmentation algorithm will be beneficial in terms of time

management. We also plan to include additional diagnostic

challenges, such as differentiating malignant mesothelioma

from adenocarcinoma involving the pleura, which is also a

well-known problem in surgical pathology and effusion cytol-

ogy (35). There are also an increasing number of studies in

immunohistochemistry especially focused on mesothelioma

detection. However, there is still no standard test that perfectly

discriminates mesothelioma from carcinoma. We also men-

tion there is significant room for improvement in automating

the nuclear segmentation procedure. In this work, we have

used guidance from a trained pathologist for selecting meso-

thelial cells from the image field of view, and initializing the

segmentation procedure. Potentially, these procedures could

be automated using a variety of nuclear segmentation meth-

ods (36), whereas the selection of nuclei pertinent to mesothe-

lial cells can be performed using classification approaches.

In addition, we have shown that certain standard numer-

ical feature-based methods may not perform and the LOT

approach described earlier. We hypothesize that the reason for

the improvement in accuracy is related to the fact that the

existing numerical feature-based approaches, as detailed

above, are not invertible operations, which means it is not

possible to regenerate images from feature space. Thus they

are likely to ‘discard’ information which, at times, may be rele-

vant to the problem at hand. In contrast, the LOT approach

we have used, in theory (if enough approximating particles

are used), can be seen as an invertible transformation and

thus is more likely to preserve more information relevant to

the discrimination task at hand. Moreover, because the pro-

cess of obtaining LOT embedding constitutes an invertible

nonlinear transformation, as explained in (25), this nonlinear-

ity potentially increases the linear separability of the data,

thus allowing for higher classification accuracies with rela-

tively simple classifiers. Future work also includes a more the-

oretical investigation to describe this phenomenon.

Finally, we also note that the voting-based classifier pre-

sented above is one option amongst several other possible

ones. The strategy consisted of classifying nuclei individually

(independently of each other) first, and then aggregating

results through a voting procedure. The (testing set classifica-

tion) accuracy for individual nuclei was 73.3% using the LOT

method, and 59.8% using the numerical feature approach. In

our work, we have chosen the majority vote, though one

could also use a different “threshold” in the voting procedure,

at the expense of a decrease in accuracy (data not shown for

brevity). In a more general sense, the strategy of classifying

nuclei individually (independently of each other) first, and

then aggregating results through a voting procedure can be

seen as an implementation of the Na€ıve Bayes method for clas-

sification. When dependency exists between samples, alternate

strategies already exist and can be used (37). Future work will

include expanding our patient database to test the method

with a larger cohort, improving the automation of our seg-

mentation method, and testing other set classification strat-

egies for determining the class of each patient.

In conclusion, our results show that the recently devel-

oped transport-based morphometry approach can reliably tell

apart malignant from benign sets of mesothelial cells, by only

looking at effusion cytology specimens. In contrast, feature-

based approach fails to get correct classification for seven

patients. According to our pathologist reports, five misclassi-

fied malignant patients were also misdiagnosed by cytopatho-

logists when they made the diagnosis by only looking at

effusion cytology. These cases turned out to be malignant on

biopsy. The reason is that cytopathologists may be reluctant to

make the diagnosis of malignant mesothelioma based on

cytology alone, because no information is available from tis-

sue structure.
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